New possibilities of effective breeding in cattle based on the study of the genome


  • V. Y. Bodnaruk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
  • L. I. Muzyka Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
  • P. V. Bodnar Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
  • A.J. Zhmur Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
  • T. V. Orihivsjkyj Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
Keywords: molecular genetic markers, genotype, gene pool, polymorphism, capsaicin, somatotropin, myostatin

Abstract

The article contains generalized literary data on the results of genome research based on molecular genetic methods in connection with the productive qualities of cattle that can be used to accelerate and improve breeding work. The study of the human genome has given impetus to the development of medicine, biotechnology and pharmacogenetics. Similarly, new research on the genome of cattle gives qualitatively different possibilities for using these data in the selection and production of agricultural products, as well as in controlling its quality. Molecular genetic markers inform about the polymorphism of genes and allow to detect individual genes and gene complexes that carry information about a certain feature. Based on such studies, gene pool can be formed with a certain combination. An alternative way of molecular-genetic marking of performance is to study the polymorphism of structural genes, allelic variants which are directly related to the desired phenotypic manifestation, namely: kappa-casein (CSN3), veta-lactaglobulin (BLG), somatotropin (GH), and myostatin (MSTN). Modern breeding work with cattle is associated with the establishment of a connection between the polygenic signs of productivity and the «main» genes of quantitative traits, the polymorphism of which affects the final output of the protein product. As candidate genes that affect lactation productivity in cattle, first of all the genes of milk proteins, in particular kappa-casein, are examined. The gene for the somatotropic hormone (GH), a growth hormone in cattle, is a polypeptide consisting of 191 amino acids and is encoded by a single gene, which is localized in 19 chromosomes. Growth hormone plays a key role in stimulating the synthesis of protein, cell division, and body growth. Myostatin – one of the regulators of skeletal muscle development is the myostatin gene, which refers to a family of transforming growth factors. The gene of myostatin in the Bovine species is localized in chromosome 2 and carries the muscle hypertrophy locus, there is also a homologous fragment of human chromosome 2, where the locus of this gene is limited. The presence of the gene of myostatin, as one of the locus of quantitative traits of beef, can be used as a marker for genetic mapping. After discovering mutations in the gene of the myostatin, they came to the conclusion, that it is not the only gene that controls the growth and muscle mass of animals. Molecular genetic markers allow you to receive information about the polymorphism of genes and to identify individual genes and gene «ensembles» that carry the desired complex of features.

References

Andresson-Eklund, L., Rendel, J. (1993). Linkage between amylase і locus and a major gene for milk fat content in cattle. Anim. Genet. 24, 101–103.

Balackij, V.N., Lisovskij, I.L., (1997). Geneticheskij po-limorfizm somatotropna. Citologija i genetika. 31 (6), 45–52 (in Russian).

Bashhenko, M.I. (2011). Vyznachennja genotypu tvaryn za genamy kalpai'nu, tyreoglobulinu ta miostatynu u tvaryn m’jasnyh porid velykoi' rogatoi' hudoby: metodychni rekomendacii'. Kyi'v (in Ukrainian).

Bovenhuis, H., Van Arendock, J.A.M., Korver, S. (1992). Association between milk-protein polymorphysms and milk production traits. Dairy Sci. 75, 25–49.

Bulat, S.A., Kobaev, O.N., Mironenko, N.V. (1992). Polimeraznaja cepnaja reakcija s universal'nymi prajmerami dlja izuchenija genomov. Genetika. 28(5), 19–28 (in Russian).

Elyasi, G., Shodja, J., Nassiry, M.R. (2010). Polymor-phism of β-Lactoglobulin Gene in Iranian Sheep Breeds Using PCRRFLP. Journal of Molecular Genet-ics. 2(1), 6–9.

Fahrenkrug, S.C. et al. (1999). Technical Note: Direct Genotyping of the Double-Muscling Locus (mh) in Piedmontese and Belgian Blue Cattle by Fluorescent PCR. Animal Science. 77, 2028–2030.

Fox, P., Mullvichil, D. (1982). Milk proteins: molecular, colloid and fuctional properties. Journal of Dairy Re-search. 49, 578–693.

Glazko, V.I., Dyman', T.N., Tarasjuk, S.I., Dubin, A.V. (1993). Polimorfizm belkov, RAPD-PCR i ISSR-PCR markerov u zubrov, bizonov i krupnogo rogatogo skota. Citologija i genetika. 33(6), 30–39 (in Russian).

Gorbatova, К.К. (1997). Biohimija moloka y molochnyh produktov. Moskva: Kolos (in Russian).

Grochowska, R., Sorensen, P., Zwierzchowski, L., Shochowski, M. (2001). Genetic variation in stimulat-ed GH release and in IGF-I young dairy cattle and their associations with leucine/valine polymorphism in GH gene. Animal Science Journal. 79(2), 470-6.

Harichev, D.S. (2017). Suchasni molekuljarno-genetychni doslidzhennja u vivcharstvi. Vivcharstvo ta kozivnyc-tvo. 2, 215–222 (in Ukrainian).

Ikonen, T. et al. (1996). Allele frequencies of the major milk proteins in the Finnish Ayrshire and detection of a new kappa-casein variant. Animal Genetics. 27, 179–181.

Kaminski, S., Figiel, L. (1993). Kappa-casein genotyping of Polish Black-and-White x olstein-Friesian bulls by polymerase chain reaction. Genetica Polonica. 34, 65–72.

Karim, L., Coppieters, W., Grobet, L., Valentini, A., Georges, M. (2000) Convenient genotyping of six my-ostatm causing double-muscling in cattle using a mul-tiplex oligonuc-lotide ligation assay. Animal Genetics. 31, 396–399.

Konfortov, B.A., Lecence, V.E., Miller, J.R. (1999). Re-sequencing of DNA from a diverse panel of cattle re-veals a hign level of polymorphism in both intron and exon. Mammalian Genome. 10, 1142–1145.

Kopylov, K.V. at al. (2014). Metodologija ocinky genoty-pu tvaryn za molekuljarno-genetychnymy markera-my v tvarynnyctvi Ukrai'ny. Za nauk. red. akad. NAAN Gladija M. V. Kyi'v: Agrar. nauka (in Ukrainian).

Krzyzewski, J., Strzalkowska, N., Ryniewicz, Z. (1998). Zwiazek miedzy genetycznym polimorfizmem bialek a wydajnoscia, skladem chemicznym I parametrami technologicznymi mleka krow. Prace і materialy zoo-techniczne. 52, 7–36.

Kuryl, J. (2000). The current stale of research on the quantitative traits loci in farm animals – a review. Prace і materialy Zootechniczne. 56, 7–50.

Metlyc'ka, O.I., Kopylov, K.V., Berezovs'kyj, O.V. (2016). Suchasni molekuljarno-genetychni pidhody dlja pidvyshhennja efektyvnosti selekcijnogo procesu v tvarynnyctvi Ukrai'ny. Rozvedennja i genetyka tvaryn. 51, 193–200 (in Ukrainian).

Mihailov, N.V., Getmantseva, L.V., Bakoev, S.U., Usatov, A.V. (2014). Associations between PRLR /AluI gene polymorphism with reproductive, growth and meat traits in pigs. Cytology and Genetics. 48(5), 323–326.

Nekrasov, V. (2017). Instruktor z geniv. Jak Darija Losjeva stvoryla startap, shho upovil'njuje starinnja. Ukrai'ns'ka pravda. – Rezhym dostupu: http://www.pravda.com.ua/articles/2017/02/21/7135673/ (Data zvernennja: 21.02.2017) (in Ukrainian).

Oblap R.V., Malijenko, V.A., Glasko, V.I. (2001). PRC-diagnostyka polimorfnyh variantiv gena В-laktoglobulinu velykoi' rogatoi' hudoby. Visnyk agrarnoi' nauky, 15 (in Ukrainian).

Shuster, D., Kehril, M., Ackermann, M., Gilbert, R. (1992). Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cat-tle. Proc. Natl. Acad. Sci. USA. 89, 9225–9229.

Sulimova, G.Е. еt al. (1991). Genotipirovanie lokusa kapa-kazeina u krupnogo rogatogo skota s pomoshh'ju polimeraznoj cepnoj reakcii. Genetika. 27(12), 2053–2062 (in Russian).

Sulimova, G.Е. еt al. (1992). Analiz polimorfizma DNK klasternyh genov u krupnogo rogatogo skota: geny kazeinov i geny glavnogo kompleksa gistosovmesti-mosti (BOLA). Citologija i genetika. 26(5), 18–25 (in Russian)

Suprovych, T.M., Mohnachova, N.B. (2017). Po-limorfizm geniv gospodars'ko-korysnyh oznak siroi' ukrai'ns'koi' porody velykoi' rogatoi' hudoby. Biologija tvaryn. 19(1), 111–118 (in Ukrainian).

Taylor, W.E., Bhasin, S., Artaza, J., Byhower, F., Azam, M., Willard, D.H., Jr., Kull, F.C, Gonzalez-Cadavid, N. (2001). Myostatin inhibits cell prolifera-tion and protein synthesis in C2C12 muscle cells. Am J. Physiol Endocrinol Metab. 208(2), 221–8.

Williams, J., Kubelik, A., Livak, K., Rafalski, K., Tingey, J. (1990) DNA polymorphism amplified by arbitrary primers are useful are genetic markers. Nucleic Acids Research. 18, 6513–6535.

Zhang, H.M. еt al. (1993). Polymerase chain reaction – restriction fragment lengh polymorphism analysis of the bovine somatotropine gene. Anim. Sci. 71, 2276.

Abstract views: 75
PDF Downloads: 103
Published
2017-10-30
How to Cite
Bodnaruk, V., Muzyka, L., Bodnar, P., Zhmur, A., & Orihivsjkyj, T. (2017). New possibilities of effective breeding in cattle based on the study of the genome. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 19(79), 32–37. https://doi.org/10.15421/nvlvet7907

Most read articles by the same author(s)