MICROSATELLITE INSTABILITY


  • N. Shemediuk Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z.Gzhytskyj
Keywords: DNA, microsatellites DNA markers, molecular genetic studies, genetic diversity, genome, polymorphism, microsatellite instability

Abstract

Tandemly repeated short sequence motifs ranging from 1–6 base pairs are called microsatellites. Microsatellites are a ubiquitous component of the genome of organisms. Mictosatellites can be presented in the genome everywhere, both in noncoding and coding sequences, affecting transcriptional activity. Polymorphism of mictosatellites can be identified by their morphological characteristics.Their high mutation rate provides the basis for the successful use of microsatellites as genetic markers. Relative saturation of genomes with any mictosatellite sequences is the result of influence of many factors, which all in all determine composite, structural features of genomic mictosatellite sequences. Microsatellites are considered phenotypic markers of prognosis, therapeutic response.

 

Author Biography

N. Shemediuk, Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z.Gzhytskyj
k. b. s., department of Biotechnology and Radiology

References

Baldi, P., Baisnee, P. F. (2000). Sequence analysis by additive scales: DNA structure for sequences and repeats lengths / Bioinformatics. 16, 865–889.

Barros, R. (2010). Pathophysiology of intestinal metaplasia of the stomach: emphasis on CDX2 regulation / R. Barros, V. Camilo, B. Pereira // Biochem. Soc. Trans. 38, 2, 358–363.

Bull, L. (2000). Compound microsatellite repeats: practical and theoretical feautures / L. Bull, C. R. Pabon-Pena, N. B. Freimer // Genome Res. 9, 830 – 838.

Hancock, J. M. (2001). A role for selection in regulating the evolutionary emergence of disecausing and other coding CAG repeats in humans and mice / J. M. Hancock, E. A. Worthey, M. F. Santibanez-Koref // Mol. Biol. Evol. – 2001. – Vol. 18, № 6. – P. 1014–1023.

Jarne, P. (2001). Microsatellites, transposable elements and the X chromosomes / P. Jarne, P. David, F. Viard // Mol. Biol. Evol. 15, 28–34.

Leontis, N. B. (2002). The non-Watson–Crick base pairs and their associated isostericity matrices / N. B. Leontis, N. Stombaugh, J. Westhof // Nucl. Acid. Res. 3, 3497–3591.

Pearson, C. E., Sinden, R. R. (1998). Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA / Curr. Opin. Struct. Biol. 3, 321–330. Review.

Stephan, W., Cho, S. (1994). Possible role of natural selection in the formation of tandemrepetitive noncoding DNA / Genetics. 136, 333–341.

Van Lith, H. A. (1996). Characterisation of rabbit DNA microsatellites extracted from the EMBL nucleotide sequence database / H. A. van Lith, L. F. van Zutphen // Anim Genet. 27, 387–395.

Vinnyk, Ju. O., Popovs'ka, T. M., Movchan, O. V., Kotenko, O. Je., Kul'shyn, V. Je. (2013). Mikrosatelitna nestabil'nist' pry sporadychnomu raku shlunka // Naukovyj visnyk Uzhgorods'kogo universytetu, serija «Medycyna». 2 (47), 22–26. (in Ukrainian).

Dzicjuk, V., Mel'nyk, O. (2012). Mikrosatelitni DNK-markery u zberezhenni genetychnogo riznomanittja konej // Tvarynnyctvo Ukrai'ny. 7–10. (in Ukrainian).

Syvolap, Ju. M., Kozhuhova, N. E. (2008). DNK-tehnologii' u doslidzhenni genetychnogo potencialu kukurudzy // Selekcija i nasinnyctvo. 96, 113–120. (in Ukrainian).

Harchenko, O. V. (2014). Vysoka informatyvnist' molekuljarno-biologichnyh markeriv // Visnyk problem biologii' i medycyny. 3 (112), 11–16. (in Ukrainian).

Abstract views: 17
PDF Downloads: 18
Published
2015-03-08
How to Cite
Shemediuk, N. (2015). MICROSATELLITE INSTABILITY. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 17(1), 277-281. Retrieved from https://nvlvet.com.ua/index.php/agriculture/article/view/3590