Scientific and practical aspects of the use of prebiotics in the process of feeding ruminants


  • S. O. Vovk Institute of Agriculture of the Carpathian region of the National Academy of Agrarian Sciences of Ukraine, Obroshyno, Ukraine https://orcid.org/0000-0001-8387-1343
  • I. V. Polovyi Institute of Agriculture of the Carpathian region of the National Academy of Agrarian Sciences of Ukraine, Obroshyno, Ukraine https://orcid.org/0000-0003-0149-7314
Keywords: prebiotics, ruminants, feeding, metabolic and productive action.

Abstract

The review article presents current literature data on the classification of prebiotics. Information on the characteristics of the most common and used in the feeding of ruminants prebiotic drugs is presented. Based on literature, attention is drawn to the fact that one of the main functions of mannan oligosaccharides is their competitive binding to gram-negative bacteria of the pancreas and cecum in ruminants and inhibition of pathogenic microbiota growth in these departments of gastrointestinal tract. Fructooligosaccharides are not digested by animals, starting from the oral cavity and ending with the intestines. They are readily available substrates for the microflora of the ruminant pancreas and large intestine of animals. As for galactosyloligosaccharides, experiments have convincingly proven that they stimulate the growth and development of bifidobacteria and lactobacilli, enterobacteria and streptococci in the digestive tract of animals. Lactulose and lactiol as prebiotics have a positive effect on feed intake in young animals, changing the microbial balance and biochemical composition of the contents of the cecum. These prebiotics promote the reproduction of gram-positive bacteria in the digestive tract of animals and inhibit the growth and development of clostridia. Lactulose and lactiol activate the formation of short-chain fatty acids by the microbiota of the cecum of animals, as well as increase the permeability of the intestinal mucosa and the solubility of minerals in the colon. High molecular weight beta-glucans enhance the phagocytic, cytotoxic and antimicrobial activity of macrophages. They help to produce reactive intermediates of oxygen and nitrogen and clean the tissues of apoptotic cells. Furthermore, stimulating innate immune responses, beta-glucans increase the production of anti-inflammatory cytokines and chemokines. Inulin in ruminants has a pronounced activating effect on the immune system, as well as activates the production of short-chain fatty acids in the pancreas and large intestine. The biological mechanism of action in the digestive tract of ruminants of such prebiotics as: mannan oligosaccharides, fructooligosaccharides, galactooligosaccharides, lactulose, lactiol, beta-glucans, inulin is described. The productive effect of prebiotics when using their additives in the diets of young and adult ruminants is characterized. It is shown that the use of the above prebiotic drugs in the feeding of ruminant species selectively stimulates the metabolic processes of the symbiotic microflora of the pancreas and cecum, activates their vital functions and growth. The use of prebiotic supplements in the diets of cows stimulates milk productivity and improves milk quality. In fattening cattle, the stabilization of the pH of the scar content through the use of prebiotics increases the average daily gain and live weight of animals and the efficiency of assimilation of nutrients in feed.

References

Berg, R. D. (1985). Indogenous intestinal microflora and the host immune response. J. Immunopharmacol, 4, 161–168.

Bezpalko, А. V. (2012) Effect of feed additive Actisaf Cz 47 on dairy productivity of high-yielding cows, compared to baker's dry yeast. Bulletin of the Zhytomyr National Agro-Ecological University, 2(33), 104–106 (in Ukrainian).

Bezpаlko, А. V. (2013). Influence of yeast crops on dairy productivity of cows during heat stress. Materials III International scientific-practical conference “Zootechnical science: history, problems, prospects”. Kamianets-Podilskyi, 22–23 (in Ukrainian).

Bouhnik, Y. (2004). Lactulose ingestion increases faecal bifidobacterial counts: a randomised double-blind study in healthy humans. Eur. J. Clin. Nutr, 58(3), 1658–1664. doi: 10.1038/sj.ejcn.1601829.

Brown, G. D., & Gordon, S. (2003). Fungal β-glucans and mammalian immunity. Immunity, 19(3), 311–315. doi: 10.1016/S1074-7613(03)00233-4.

Czaczyk, K. (2003). The creating biofilms of bacteria – the creature the phenomenon and mechanisms of in-fluences. Biotechnology, 3, 180–192.

Desnoyer, M., Giger-Reverdin, S., Bertin, G., Duvaux-Ponter, C., & Sauvant, D. (2009). Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy. Sci., 92(4), 1620–1632. doi: 10.3168/jds.2008-1414.

Egorov, B. V., & Mokrinskaya, A. V. (2010). Modern alternatives to feed antibiotics. Cereal products and compound feeds, 3, 27–34 (in Ukrainian).

Fleige, S., Preißinger, W., Meyer, H. H., & Pfaffl, M. W. (2007). Effect of lactulose on growth performance and intestinal morphology of preruminent calves us-ing a milh replacer conteining Enterococcus facium. Anim. Sci., 1(3), 367–373. doi: 10.1017/S1751731107661850.

Franklin, S. T., Newman, M. C., Newman, K. E., & Meek, K.I. (2005). Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. J. Dairy Sci., 88(2), 766–775. doi: 10.3168/jds.S0022-0302(05)72740-5.

Friman, V., Adlerberth, I., Connell, H., Svanborg, C., Hanson, L. A., & Wold, A. E. (1996). Decreased expression of mannose-specific adhesins by Escherichia coli in the colonic microflora of immunoglobulin A-deficient individuals. Infect. Immun., 64(7), 2794–2798. https://www.ncbi.nlm.nih. gov/pubmed/8698510.

Gantner, B. N., Simmons, R. M., & Underhill, D. M. (2005). Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. Embo J. 24(6), 1277–1286. doi: 10.1038/sj.emboj.7600594.

Ghosh, S., & Mehla, R. K. (2012). Influence of dietary supplementation of prebiotics (mannanoligosaccharide) on the performance of crossbred calves. Trop. Anim. Health Prod., 44, 617–622. doi: 10.1007/s11250-011-9944-8.

Grand, E., Respondek, F., Martineau, C., Detilleux, J., & Bertrand, G. (2013). Effects of short-chain fructooligosaccharides on growth performance of preruminant veal calves. J. Dairy Sci., 96(2), 1094–1099. doi: 10.3168/jds.2011-4949.

Hasunuma, T., Kawashima, K., Nakayama, H., Murakami, T., Kanagawa, H., Ishii, T., Akiyama, K., Yasuda, K., Terada, F., & Kushibiki, S. (2011). Effect of cellooligosaccharide or synbiotic feeding on growth performance, fecal condition and hormone concentrations in holstein calves. Anim Sci J., 82(4), 543–548. doi: 10.1111/j.1740-0929.2010.00861.x.

Hopkins, M. J., Cummings, J. H., & Macfarlane, G. T. (1998). Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. Journal of Applied Microbiology, 85(2), 381–386. doi: 10.1046/j.1365-2672.1998.00524.x.

Karput, I. M., & Babina, M. P. (2008). Pro- and prebiotics in increasing resistance, stimulation of growth and prevention of young diseases. Vitebsk State Academy of Veterinary Medicine,4(2), 87–89 (in Russian).

Kim, M. H., Seo, J. K., Yun, C. H., Kang, S. J., Ko, J. Y., & Ha, J. K. (2011). Effects of hydrolyzed yeast supplementation in calf starter on immune responses to vaccine challenge in neonatal calves. Animal. Sci., 5(6), 953–960. doi: 10.1017/S1751731110002673.

Kravchenko, N. O., Dmitruk, O. M., & Bozhok, L. V. (2014). Influence of prebiotics on the biological activity of lactic acid bacteria. Agricultural Microbiology, 20, 54–59 (in Ukrainian).

Lazarevic, M. (2010). Effect of gut active carbohydrates on plasma IgG concentrations in piglets and calves. Animal. Sci., 4(6), 938–943. doi: 10.1017/S1751731110000194.

Lomax, A. R., & Calder, P. C. (2009). Prebiotics, immune function, infection and inflammation. A review of the evidence. Br. J. Nutr., 101(5), 633–658. doi: 10.1017/S0007114508055608.

Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett., 294(1), 1–8. doi: 10.1111/j.1574-6968.2009.01514.x.

Malkoch, S. V., Belmer, T. V., & Gasilina, A. V. (2014). The importance of prebiotics for the functioning of the intestinal microflora. Agricultural Mikrobiology, 20, 59–63 (in Russian).

Masanetz, S., Preißinger, W., Meyerand, H. H. D. & Pfaffl, M. W. (2011). Effects of the prebiotics inulin and lactulose on intestinal immunology and hematology of preruminant calves. Animal Sci., 5(7), 1099–1106. doi: 10.1017/S1751731110002521.

Milewski, S., Wójcik, R., Małaczewska, J., Trapkowska, S., & Siwicki, A. K. (2007). Effect of β-1.3/1.6-D-glucan on meat performance and non-specific humoral defense mechanisms in lambs. Med. Vet., 63(3), 360–363. https://www.cabdirect.org/cabdirect/abstract/ 20073053051.

Mukhina, N., Lunegovа, I. V., & Sidorov, M. V. (2008). Prebiotics – the way to increase the productivity of cattle. Actual problems of intensive development of livestock breeding. Gorki, 11, 50–55 (in Russian).

Ouwehand, A., & Vesterlund, S. (2004). Antimicrobial components from lactic acid bacteria. Food Science and Technology, 139, 375–396. doi: 10.1201/9780824752033.ch11.

Polishchuk, A. A., & Bulavkina, T. P. (2010). Modern feed additives in animal and poultry feeding. Bulletin of the Poltava State Agrarian Academy. Poltava, 2, 63–66 (in Ukrainian).

Quigley, J. D., Drewry, J. J., & Murray, L. M., & Ivey, S. J. (1997). Body weight gain, feed efficiency, and fecal scores of dairy calves in response to galactosyl-lactose or antibiotics in milk replacers. J. Dairy Sci., 80(8), 1751–1754. doi: 10.3168/jds.S0022-0302(97)76108-3.

Quigley, J. D., Kost, C. J., Wolfe, T. A. (2002). Effects of spray-dried animal plasma in milk replacers or additives containing serum and oligosaccharides on growth and health of calves. J. Dairy Sci., 85(2), 413–421. doi: 10.3168/jds.S0022-0302(02)74089-7.

Robinson, P. H., & Erasmus, L. J. (2009). Effects of analyzable diet components on responses of lactating dairy cows to Saccharomyces cerevisiae based yeast products: A systematic review of the literature. Anim. Feed Sci. Technol., 149(3–4), 185–198. doi: 10.1016/j.anifeedsci.2008.10.003.

Russo, P., López, P., Capozzi, V., de Palencia, P. F., Dueñas, M. T., Spano, G., & Fiocco, D. (2012). Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int. J. Mol. Sci., 13(5), 6026–6032. doi: 10.3390/ijms13056026.

Schuster-Wolff-Bühring, R., Fischer, L., & Hinrichs, J. (2010). Production and physiological action of the disaccharide lactulose. Int. Dairy J., 2(11), 731–741. doi: 10.1016/j.idairyj.2010.05.004.

Seki, N., Hamano, H., Iiyama, Y., Asano, Y. Kokubo, S., Yamauchi, K., Tamura, Y., Uenishi, K., & Kudou, H. (2007). Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci., 53(1), 5–12. doi: 10.3177/jnsv.53.5.

Sethy, K., Dhaigude, V., Duibedi, B. et al. (2017). Prebiotics in animal feeding. The Pharma Innovation Journal, 6(11), 482–486.

Sharon, N., & Ofek, І. (2000). Safe as mother’s milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J., 17(7–9), 659–665. doi: 10.1023/a:1011091029973.

Singh, A., Kerketta, S., & Yogi, R. (2017). Prebiotics – The New Feed Supplement for Dairy Calf. International Journal of Livestock Research, 7(8), 1–17. doi: 10.5455/ijlr.20170610051314.

Sonck, E., Stuyven, E., Goddeeris, B., & Cox, E. (2009). Identification of the porcine C-type lectin dectin-1. Vet. Immunol. Immunopathol, 130(1–2), 131–134. doi: 10.1016/j.vetimm.2009.01.010.

Spring P., Wenk, C., Dawson, K. A., & Newman, K. E. (2000). The effects of dietary mannanonoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the cecal of Salmonella-challanged broiler chicks. Poultry Sci., 79(2), 205–211. doi: 10.1093/ps/79.2.205.

Sviatenko, N. A., & Kucheriavy, V. T. (2016). Investigation of the influence of prebiotic on the rumen structure of young cattle. Topical Issues of Livestock and Fisheries Development. Materials Scientific and Practical Conference, Kiev, 97–99 (in Ukrainian).

Tarasenko, N. A., & Filippova, E. V. (2014). A brief on prebiotics: history, classification, receipt, application . Fundamental Research, 6, 1–5 (in Russian).

Uyeno, Y., Shigemori, S., & Shimosato, T. (2015). Effect of Probiotics/Prebiotics on Cattle Health and Productivity. Microbes Environ, 30(2), 126–132. doi: 10.1264/jsme2.ME14176.

Van Loo, J., Coussement, P., de Leenheer, L., Hoebregs, H., & Smits, G. (1995). On the presence of inulin and oligofructose as natural ingredients in the Western diet. Crit. Rev. Food. Sci. Nutr., 35(6), 525–552. doi: 10.1080/10408399509527714.

Vetvicka, V., & Yvin, J. (2004). Effects of marine β-1,3glucan on immune reactions. Int. Immunopharmacol., 4(6), 721–730. doi: 10.1016/j.intimp.2004.02.007.

Watzl, B., Girrbach, S., & Roller, M. (2005). Inulin, oligofructose and immunomodulation. Brit. J. Nutr., 93(1), 49–55. doi: 10.1079/bjn20041357.

Wójcik, R., Trapkowska, S., & Małaczewska, J. (2007). Influence of ß-1,31,6-D-glucan on non-specific cellular defence mechanisms in lambs. Med. Veter., 63(1), 84–86.

Abstract views: 3
PDF Downloads: 3
Published
2020-05-08
How to Cite
Vovk, S., & Polovyi, I. (2020). Scientific and practical aspects of the use of prebiotics in the process of feeding ruminants. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 22(92), 9-14. https://doi.org/10.32718/nvlvet-a9202