Influence of the microelement lactates on prooxidant-antioxidant homeostasis in boars


Keywords: blood, peroxidation, microelements, catalase, vitamins, TBA-active complexes

Abstract

The microelements, closely linked to enzymes, vitamins and hormones, cause the metabolic transformations to realize the genetic potential of the productivity in pigs. The use of chelate compounds of microelements as an alternative replacement of mineral salts allows to increase their conversion, to reduce the content in compound feeds, preventing environmental pollution. The purpose of the study was to determine the effect of microelement lactates on prooxidant-antioxidant homeostasis in boars. It was used the adult boars of the Large White breed in the study. The duration of the experiment was 120 days, including: preparatory one is 30 days, basic one is 60 days (feeding boars with zinc, selenium, copper and iron lactates) and the final one is 30 days. In the main period of the experiment, the diet of the animals in the control group remained unchanged, and the two experimental ones were with the addition of zinc, selenium, copper and iron. The level of biologically active components in the diet of the study groups was higher by 10 % and 20 % compared with the control group. In the obtained blood samples it has been determined the state of the prooxidant-antioxidant state. Feeding zinc, selenium, copper and iron lactates in the feed mixture for boars significantly changes the prooxidant-antioxidant state in the blood depending on the amount of micronutrients additionally fed. The addition of these biologically active substances by 10 % above normal after 60 days of feeding helps to preserve the content of vitamins antioxidant action, restored glutathione, stimulates the functional activity of superoxide dismutase by 50 % and catalase by 23.6 % and is accompanied by a slight decrease processes of peroxidation decreasing the concentration of conjugates and TBA-active complexes. The addition of the microelement lactates to the feed mixture by 20 % more than the norma for boars compared with the control group after 30 days of the consumption stimulates the processes of peroxidation, accompanied by intensive use of non-enzymatic – vitamin A (P < 0.05–0.01) and the activation of enzymatic antioxidants – superoxide dismutase (P < 0.05–0.01) and catalase, which lasts for 90 days.

References

Bánhegyi, G., Csala, M., Szarka, A., Varsányi, M., Benedetti, A., & Mandl, J. (2003). Role of ascorbate in oxidative protein folding. Biofactors, 17(1–4), 37–46. doi: 10.1002/biof.5520170105.

Borysevych, V. B. ta in. (2012). Nanomaterialy i nanotekhnolohii u veterynarnii medytsyni: navch.-prakt. posibnyk. Kyiv: VD “Avitsena” (in Ukrainian).

Bosanevich, N. O., & Lesik, Ya. V. (2018). Fiziologo-biohimichni pokazniki organizmu ta produktivnist kroliv za diyi kobaltu citrate. Biologiya tvarin, 20(4), 89–89 (in Ukrainian).

Brusov, O. S., Gerasimov, A. M., & Panchenko, L. F. (1976). Vlijanie prirodnyh ingibitorov radikal'nyh reakcij na avtookislenie adrenalina. Bjulleten' jeksperimental'noj biologii i mediciny, 1, 33–35 (in Russian).

Colagar, A. Н., Karimi, F., & Jorsaraei, S. G. (2013). Correlation of Sperm Parameters With Semen Lipid Peroxidation and Total Antioxidants Levels in Astheno- and Oligoasheno-Teratospermic Men Iran Red Crescent Med J., 15(9), 780–785. doi: 10.5812/ircmj.6409.

Csala, M., Szarka, A., Margittai, E., Mile, V., Kardon, T., Braun, L., Mandl, J., & Bánhegyi, G. (2001). Role of vitamin E in ascorbate-dependent protein thiol oxidation in rat liver endoplasmic reticulum. Arch Biochem Biophys, 388(1), 55–59. doi: 10.3390/ijms10031346.

Danchuk, A. V., Karpovskij, V. I., Trokoz, V. A., & Kaplunenko, V. G. (2018). Effektivnost primeneniya nanopreparata mikroelementov Mg, Zn, Ge i Ce dlya korekcii aktivnosti sistemy antioksidantnoj zashity u svinej raznyh tipov vysshejj nervnoj deyatelnosti. Perspektivy razvitiya svinovodstva stran SNG, 243–247 (in Ukrainian).

Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev., 82(1), 47–95. doi: 10.1152/physrev.00018.2001.

Fang,Y. Z., Yang, S., & Wu, G. (2004). Free radical homeostasis. Sheng Li Ke Xue Jin Zhan., 35(3), 199–204. https://www.ncbi.nlm.nih.gov/pubmed/15469087.

Gavrilov, V. B., & Melkorudnaja, M. I. (1983). Spektrofotometricheskoe opredelenie soderzhanija gidroperekisej lipidov v plazme krovi. Laboratornoe delo, 3, 33–36 (in Russian).

Gorbatenko, I. Yu., Gil, M. I., & Zaharenko, M. O. (2018). Biologiya produktivnosti silskogospodarskih tvarin: pidruchnik. Mikolayiv:Vidavnichij dim “Gelvetika” (in Ukrainian).

Hartnett, P., Boyle, L., Younge, B. & O'Driscoll, K. (2019). The Effect of Group Composition and Mineral Supplementation during Rearing on Measures of Cartilage Condition and Bone Mineral Density in Replacement Gilts. Animals (Basel), 9(9), 637. doi: 10.3390/ani9090637.

Iefimov, V. H. (2010). Osoblyvosti biokhimichnykh pokaznykiv krovi knurtsiv pislia transportuvannia ta v period adaptatsii za dii L-karnitynu ta E-selenu. Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn i DNDKI vetpreparativ ta kormovykh dobavok, 11(2-3), 35–39 (in Ukrainian).

Jankowiak, D., Pilarczyk, R., Drozd, R., Pilarczyk, B., Tomza-Marciniak, A., Wysocka, G., Rząd, I., Drozd, A., & Kuba, J. (2015). Activity of antioxidant enzymes in the liver of wild boars (Sus scrofa) from aselenium-deficient area depending on sex, age, and season of the year. Turkish Journal of Biology, 39(1), 129–138. doi: 10.3906/biy-1405-52.

Kaidashev, I. P. (1996). Posibnyk z eksperymentalno-klinichnykhdoslidzhen z biolohii ta medytsyny. Poltava, 123–128. (in Ukrainian).

Kołodziej, A., & Jacyno, E. (2005). Effect of selenium and vitamin E supplementation on reproductive performance of young boars. Arch. Tierz., 48, 68–75. https://www.arch-anim-breed.net/48/68/2005/aab-48-68-2005.pdf.

Koroljuk, M. A., Ivanova, L. I., Majorova, I. G., & Tokarev, E. V. (1988). Metod opredelenija aktivnosti katalazy. Laboratornoe delo, 1, 16–19 (in Russian).

Kovalenko, V. F, Shostia, A. M., & Usenko, S. O. (2004). Sposib pryskorenoho vyznachennia vmistu vitaminu С ta yoho izomeriv u spermi knuriv. pat. 67054A Ukraina: MPK A61V5/00.; zaiavl.13.06.2003 ; opubl. 15.06.2004.6. 16-19. (in Ukrainian).

Kovalenko, V. F., Shostia, A. M., & Usenko, S. O. (2005). Metodyka vyznachennia vitaminiv A, E i zahalnoho kholesterynu v riznykh tkanynakh svynomatok plodiv. Suchasni metody v svynarstvi / za red. V.P. Rybalka. Poltava, 114–118 (in Ukrainian).

Linster, C. L. & Van Schaftingen, E. (2007). Vitamin C. Biosynthesis, recycling and degradation in mammals, 274(1), 1–22. doi: 10.1111/j.1742-4658.2006.05607.x.

Mahan, D. C., & Shields, R.G. Jr. (1998). Macro- and micromineral composition of pigs from birth to 145 kilograms of body weight. J Anim Sci., 76(2), 506–512. doi: 10.2527/1998.762506x.

Marchenkov, F. S., & Storozhuk, T. V. (2010). Helatni mikroelementi – vazhlivij komponent kombikormiv ta premiksiv. Zernovi produkti i kombikormi, 1, 37–38 (in Ukrainian).

Ménézo, Y., & Guérin, P. (2005). Gamete and embryo protection against oxidative stress during medically assisted reproduction. Bull Acad Natl Med., 189(4), 715–726. https://www.ncbi.nlm.nih.gov/pubmed/ 16245687.

Nardai, G., Braun, L., Csala, M., Mile, V., Csermely, P., Benedetti, A., Mandl, J., & Banhegyi, G. (2001). Protein-disulfide isomerase- and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum. J. Biol Chem., 276(12), 8825–8828. doi: 10.1074/jbc.M010563200.

Nenkova, G., Petrov, L., & Alexandrova, А. (2017). Role of Trace Elements for Oxidative Status and Quality of Human Sperm Balkan Med J., 34(4), 343–348. doi: 10.4274/balkanmedj.2016.0147.

Nowicka-Bauer, К., & Nixon, В. (2020). Molecular Changes Induced by Oxidative Stress that Impair Human Sperm. Motility Antioxidants (Basel), 9(2), 134. doi: 10.3390/antiox9020134.

Peters, J. C., Mahan, D. C., Wiseman, T. G., & Fastinger, N. D. (2010). Effect of dietary organic and inorganic micromineral source and level on sow body, liver, colostrum, mature milk, and progeny mineral composition over six parities. Journal of Animal Science, 88, 626–637. doi: 10.2527/jas.2009-1782.

Pipan, M. Z., Mrkun, J., Strajn, B. J., Vrtač, K. P., Kos, J., Pišlar, A., & Zrimšek, P. (2017). The influence of macro- and microelements in seminal plasma on diluted boar sperm quality. Acta Vet Scand., 59(1), 11. doi: 10.1186/s13028-017-0279-y.

Pipan, Z. М., Mrkun, J., Kosec, М., Nemec Svete, А., & Zrimšek, Р. (2014). Superoxide Dismutase: A Predicting Factor for Boar Semen Characteristics for Short-Term Preservation. Biomed Res Int., 2014, Article ID 105280. doi: 10.1155/2014/105280.

Quesnel, H., Renaudin, A., Le Floc'h, N., Jondreville, C., Père, M. C., Taylor-Pickard, J. A., & Le Dividich, J. (2008). Effect of organic and inorganic selenium sources in sow diets on colostrum production and piglet response to a poor sanitary environment after weaning. Animal., 2(6), 859–866. doi: 10.1017/S1751731108001869.

Rokotianska, V. O. (2018) Vplyv nanoakvakhelativ na biolohichnu povnotsinnist spermiiv. Visnyk ahrarnoi nauky Prychornomoria. Seriia: Tvarynnytstvo, 3, 56–61. doi: 10.31521/2313-092X/2018-3(99)-9 (in Ukrainian).

Shabunin, S. V. (2010) Metodicheskie polozhenija po izucheniju processov svobodnoradikal'nogo okislenija v sisteme antioksidantnoj zashhity organizma. Voronezh, 36–37 (in Russian).

Shostia, A. M., Rokotianska, V. O., Tsybenko, V. H., & Sokyrko, M. P. (2017). Osoblyvosti protsesiv peroksydnoho okysnennia u spermi knuriv-plidnykiv zalezhno vid pory roku ta intensyvnosti yikh vykorystannia. Visnyk Dnipropetrovskoho derzhavnoho ahrarno-ekonomichnoho universytetu, 4, 34–38. http://nbuv.gov.ua/UJRN/vddau_2017_4_8 (in Ukrainian).

Shostia, A. M., Rokotianska, V. O., Tsybenko, V. H., Sokyrko, M. P., Hyria, V. M., Nevidnychyi, O. S., Kaplunenko, V. H., & Pashchenko, A. H. (2018). Vplyv nanoakvakhelativ na yakist spermoproduktsii u knuriv-plidnykiv. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Tvarynnytstvo, 7(35), 156–160. http://dspace.pdaa.edu.ua:8080/handle/ 123456789/5224 (in Ukrainian).

Sivertsen, T., Vie, E., Bernhoft, A., & Baustad, B. (2007). Vitamin E and selenium plasma concentrations in weanling pigs under field conditions in Norwegian pig herds. Acta Veterinaria Scandinavica, 49(1), 1–9. doi: 10.1186/1751-0147-49-1.

Sutovsky, P., Kerns, K., Zigo, M., & Zuidema, D. (2019). Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology, 1(137), 50–55. doi: 10.1016/ j.theriogenology.2019.05.037.

Takahashi, M. (2012). Oxidative stress and redox regulation on in vitro development of mammalian embryos. J Reprod Dev., 58(1), 1–9. doi: 10.1262/jrd.11-138n.

Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., &Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol., 39(1). 44–84. doi: 10.1016/j.biocel.2006.07.001.

Vlizlo, V. V., Fedoruk, R. S., & Iskra, R. Ia. (2018). Biolohichna diia funktsionalnykh nanomaterialiv u riznykh vydiv tvaryn. Visnyk ahrarnoi nauky, 11(788), 80–86. doi: 10.31073/agrovisnyk201811-11 (in Ukrainian).

Wu, Y., Guo, L., Liu, Z., Wei, H., Zhou, Y., Tan, J., Sun, H., Li, S., Jiang, S., & Peng, J. (2019). Microelements in seminal and serum plasma are associated with fresh semen quality in Yorkshire boars. Theriogenology, 132(1), 88–94. doi: 10.1016/j.theriogenology.2019. 04.002.

Abstract views: 5
PDF Downloads: 1
Published
2020-05-08
How to Cite
Usenko, S., Shostya, A., Stoyanovskyy, V., Birta, G., Kuzmenko, L., & Myronenko, O. (2020). Influence of the microelement lactates on prooxidant-antioxidant homeostasis in boars. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 22(92), 28-34. https://doi.org/10.32718/nvlvet-a9206