Growth intensity and antibacterial properties of Enterococcus faecium and Enterococcus durans strains isolated from traditional Carpathian brynza


Keywords: Enterococcus durans, E. faecium, acidity, growth rate, antagonistic activity, Carpathian cheese brynza, probiotics

Abstract

The article presents the results of the study the ability of four not studied strains of enterococci (E. durans, SB6, E. faecium SB12, E. durans SB18, E. durans SB20), which were isolated from the Carpathian brynza, to reduce the acidity of medium of cultivation, the rate of biomass accumulation and the ability to exhibit antagonistic properties to the opportunistic microflora. Lactic acid and minor compounds are producing in a result of lactose fermentation, which form the specific taste and aroma properties of the product. The activity of acid formation has crucial because it directly connected with the coagulation of proteins and the prevention of the growing of extraneous microflora. Therefore, the rate of acidity increasing of the medium is one of the most important characteristics in selection of strains of lactic acid bacteria for the manufacture of dairy products. High growth rate, resistance to the contamination of extraneous microflora and preservation of their properties in the finished product are the technological properties of the strains. The inhibition of the growth of pathogenic cultures of microorganisms is the main probiotic functions of beneficial bacteria namely antagonistic activity. It was found, that the strain E. durans SB20 manifested the highest ability to increase the acidity of the medium under the cultivation for 24 hours at 37 °C as it reduced the pH on 30.3 %, and the strain E. durans SB18 increased the acidity on 29.9 %. Under 48 hours strains E. durans SB20 and SB18 increased the acidity on 31.1 and 30.5 % (P< 0.001) respectively compared with the control. The growth rate of stains E. durans SB20 and E. durans SB18 were in 18,0 and 17,6 times higher than in control under the cultivation for 24 hours at 37 °C, the optical density were in 18.3 and 18.2 times higher respectively than in the control sample under the cultivation for 48 hours at the same temperature. Furthermore, strains of enterococci showed antagonistic properties against conditionally pathogenic cultures of microorganisms on 24 and 48 hour of cultivation. In addition, it was found that with an increasing temperature of the antagonistic activity of the strains cultivation increased. Obviously, it was connected that more biologically active substances and microbial secondary metabolites are formed under the longer cultivation and higher temperatures. In particular on 48 hours at 37 °C almost of all the tested strains showed moderate antagonistic activity against E. coli, S. enteritidis, E. aerogenes, P. mirabilis and P. aeruginosa. However, all four strains didn`t have antagonistic activity against the test-strain S. aureus.

References

Botyna, S. G. (2008). Vydovaja ydentyfykacyja y genetycheskaja pasportyzacyja molochnokyslyyh bakteryj metodamy molekuljarno-genetncheskogo typyrovanyja. Molochnaja promyyshlennost', 3, 50–52 (in Ukrainian).

Braïek, O. B. & Smaoui, S. (2019). Enterococci: Between Emerging Pathogens and Potential Probiotics. Hindawi BioMed Research International, 2019, Article ID 5938210. doi: 10.1155/2019/5938210.

Choi, A. R., Patra, J. K., Kim, W. J., & Kang, S. S. (2018). Antagonistic Activities and Probiotic Potential of Lactic Acid Bacteria Derived From a Plant-Based Fermented Food. Front Microbiol, 9, 1–12. doi: 10.3389/fmicb.2018.01963.

Dehtjarenko, Η. V., Shynkarenko, L. M., & Dugan, O. M. (2007). Kryterii' vidboru probiotychnyh shtamiv mik-roorganizmiv. Naukovi Zapysky. Biologija ta ekologi-ja, 67, 30–36 (in Ukrainian).

Duc, Le. H., Hong, H. A., Barbosa, M. T. et al. (2004). Characterization of Bacillus Probiotics Avialable fro Human use. Applied and Environmental Microbiolo-gy, 70(4), 2161–2171. doi: 10.1128/AEM.70.4.2161-2171.2004.

Ezendam, J., Opperhuizen A., & van Loveren, H.(2005). Immunomodulation by probiotics: efficacy and safety evaluation. RIVM report 340320003.

Franz, C., Schillinger, U., & Holzapfel, W. H. (1996). Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. International Journal of Food Microbiology, 29(2-3), 255–270. doi: 10.1016/0168-1605(95)00036-4.

Giraffa, G. (2003). Functionality of enterococci in dairy products. International Journal of Food Microbiology, 88(2-3), 215–222. doi: 10.1016/S0168-1605(03)00183-1.

Gordijenko, P. A., Chujeshov, V. I., & Pashnjeva, R. O. (2009). Rozrobka skladu ta tehnologii' tabletok-jader kombinovanogo probiotyka. Farmakom, 3, 19–23 (in Ukrainian).

Hyzhnjak, O. S. (2017). Rozrobka skladu ta biotehnologii' otrymannja kompleksnogo probiotychnogo preparatu: avtoref. dys. na zdobuttja nauk. stupenja kandydata farmac. nauk: spec. 15.00.01 “Tehnologija likiv, organizacija farmacevtychnoi' spravy ta sudova farmacija”. Harkiv (in Ukrainian).

Jankovskij, D. S., Shirobokov, V. P., Moiseenko, R. A. et al. (2010). Disbiozy i sovremennye podhody k ih profilaktike. Sovremennaja pediatrija, 3(31), 143–151 (in Ukrainian).

Jankovskyj, D. S., Moyseenko R. A., & Dyyment, G. S. (2009). Osobennosty otechestvennyyh mul'-typrobyotykov. Sovremennaja pedyatryja, 3(25), 79–86 (in Ukrainian).

Jushhuk, N. D. & Brodov L. E. (2001). Ostrye kishechnye infekcii: diagnostika i lechenie. Medicina, 244–253 (in Russian).

Sarantinopoulos, P., Andrighetto, C., Georgalaki M.D. et al. (2001). Biochemical properties of enterococci relevant to their technological performance. International Dairy Journal, 11(8), 621–647. doi: 10.1016/S0958-6946(01)00087-5.

Shenderov, B. A. (2001). Medicinskaja mikrobnaja jekologija i funkcional'noe pitanie. T. 3. Probiotiki i funkcional'noe pitanie. GRANT (in Russian).

Shyrobokov, V. P., Jankovs'kyj, D. S., & Dyment, G. S. (2008). Mikrobna ekologija ljudyny z kol'orovym atlasom: [navch. posib.]. TOV “Chervona Ruta-Turs” (in Ukrainian).

Slyvka, I. M., Tsisaryk, O. Y., Dronyk, G. V., & Musiy L. Y. (2018). Strains of lactic acid bacteria isolated from traditional Carpathian cheese. Regul. Mech. Biosyst., 9(1), 62–68. doi: 10.15421/021808.

Sornplang, P. & Piyadeatsoontorn, S. (2016). Probiotic isolates from unconventional sources: a review. Journal of Animal Science and Technology, 58, 26. doi: 10.1186/ s40781-016-0108-2.

Strel'nikov, L. S., Strilec, O. P., Shherbak, O. V. et al. (2006). Perspektivy i puti razvitija proizvodstva biotehnologicheskih lekarstvennyh preparatov v Ukraine. Annals of Mechnicov Institute, 4, 3–8 (in Ukrainian).

Tihomirova, N. A. (2002). Tehnologija produktov funkcional'nogo pitanija: monogr. Frantjera, 213 p (in Russian).

Tuomola, E., Crittenden, R., Playne, M. et al. (2001). Quality assurance criteria for probiotic bacteria. American Journal of Clinical Nutrition, 73, 393–398. doi: 10.1093/ajcn/73.2.393s.

White, H. (2008). The effect of variation in pH on the heat resistance of cultures of Streptococcus faecalis. Journal of applied bacteriology, 26(1), 91–99. doi: 10.1111/j.1365-2672.1963.tb01161.x.

Yaneisy, G. H., Tania, P. S., Ramón, B., José, L., Balcázar, J. R., Nicoli, J. M. S., et al. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res Vet Sci, 108, 125–32. doi: 10.1016/j.rvsc.2016.08.009

Abstract views: 3
PDF Downloads: 1
Published
2020-05-08
How to Cite
Kushnir, I., Tsisaryk, O., Slyvka, I., Musiy, L., Kushnir, I., & Semen, I. (2020). Growth intensity and antibacterial properties of Enterococcus faecium and Enterococcus durans strains isolated from traditional Carpathian brynza. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 22(92), 42-49. https://doi.org/10.32718/nvlvet-a9208