Changes in goslings’ blood pattern under the influence of different doses additives of selenium in forages

Keywords: goslings, blood, selenium, dose, all-mash


According to many scientists, the list of trace elements that are currently used in compound feeds for various types of poultry is clearly insufficient. In recent years, applied research has been conducted to determine the physiological needs of poultry for certain mineral elements that perform important biochemical functions in the body. This also applies to such biotic ultramicroelement as selenium. Scientific research of domestic and foreign scientists in the field of physiology, biochemistry, medicine and veterinary medicine has proved that selenium is a trace element with a fairly wide range of physiological and biochemical effects. When developing and theoretically justifying optimal norms for introducing selenium into poultry feed, it is necessary to evaluate not only its productive qualities, but also the blood picture. The question of the influence of selenium on changes in blood parameters in the poultry body is a great theoretical and practical significance because it allows us to expand our knowledge of its biological role and explain the data obtained in experiments. In scientific and economic experience has been studied the influence of additives of different doses of selenium in compound feed on the morphological and biochemical parameters of the goslings' blood raised for meat. During the experiment, feeding of goslings of all groups were carried out with dry feed mixes in accordance with existing norms. The goslings of the first control group did not receive selenium supplementation. The poultry of the second experimental group were additionally fed selenium at the rate of 0.2 mg/kg, the third of 0.3 and the fourth of 0.4 mg/kg. It is established that the additive in the feed of different doses of selenium stimulate hemocytopoiesis are added to different compound feeds, this is achieved by a homogeneous tendency per day, within physiological values in the goslings' peripheral blood number of red blood cells (by 1.7–3.9 %), white blood cells (by 2.1–3.2 %) and hemoglobin (by 2.4–8.6 %). Immune defense mechanisms are activated, which is manifested in an increase in the level of total protein (by 1.4–3.8 %) and the concentration of immunoglobulins in the blood serum (by 3.2–9.7 %). It is found changes in the content of total glutathione and its reduced form in the blood indicate a positive effect of selenium on the non-enzymatic element of the antioxidant defense system of the poultry's body. The addition of selenium to compound feed at a dose of 0.3 mg/kg had a significant effect on the morphological and biochemical parameters of the goslings' blood raised for meat.


Ahangari, Y. J., Parizadian, B., & Zamani, M. (2013). The impact of organic selenium supplementation on rooster semen quality in liquid condition. Poultry Science, 1(1), 23–31. doi: 10.22069/PSJ.2013.1469.

Bjorklund, G. (2015). Selenium as an antidote in the treatment of mercury intoxication. Biometals, 28(4), 605–614. doi: 10.1007/s10534-015-9857-5.

Chena, K., Fanga, J., Penga, X., Cuia, H., Chena, J., Wanga, F., Chena, Z., Zuoa, Z., Denga, J., Laia, W., & Zhoub, Y. (2014). Effect of selenium supplementation on aflatoxin B1-induced histopathological lesions and apoptosis in bursa of Fabricius in broilers. Food and Chemical Toxicology, 74, 91–97. doi: 10.1016/j.fct.2014.09.003.

Fawzy, M. M., El-Sadawi, H. A., El-Dien, M. H., & Mohamed, W. A. M. (2016). Hematological and biochemical performance of poultry following zinc oxide and sodium selenite supplementation as food additives. Annals of Clinical Pathology, 4(4), 1076.

Graupner, A., Eide, D. M., Instanes, C., Andersen, J. M., Brede, D. A., Dertinger, S. D., Lind, O. C., Brandt-Kjelsen, A., Bjerke, H., Salbu, B.,Oughton, D., Brunborg, G., & Olsen, A. K. (2016). Gamma radiation at a human relevant low dose rate is genotoxic in mice. Scientific Reports, 6, 32977. doi: 10.1038/srep32977.

Gružauskas, R., Barštys, T., Racevičiūtė-Stupelienė, A., Kliševičiūtė, V., Buckiūnienė, V., & Bliznikas, S. (2014). The effect of sodium selenite , selenium methionine and vitamin e on productivity, digestive processes and physiologic condition of broiler chickens. Veterinarija ir Zootechni, 65(87), 22–29.

Jenginoeva, T., Gadzaonov, R., & Omarov, R. (2011). Selenosoderzhashhij preparat Univetsell. Pticevodstvo, 4, 47−48 (in Russian).

Liu, H., Yu, Q., Fang, C., Chen, S., Tang, X., Ajuwon, K.M., & Fang, R. (2020). Effect of selenium source and level on performance, egg quality, egg selenium content, and serum biochemical parameters in laying hens. Foods, 9(1), 68. doi: 10.3390/foods9010068.

Lushchak, V. I. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. Journal of amino acids, 736837. doi: 10.1155/2012/736837.

Mottet, A., & Tempio, G. (2017). Global poultry production: current state and future outlook and challenges. World's Poultry Science Journal, 73(2), 245–256. doi: 10.1017/S0043933917000071.

Ponomarenko, Ju. (2007). Selen i jod v racionah brojlerov Pticevodstvo, 4, 38–39 (in Russian).

Ramoutar, R. R., & Brumaghim, J. L. (2010). Antioxidant and anticancer properties and mechanisms of inorganic selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem Biophys, 58, 1–23. doi: 10.1007/s12013-010-9088-x.

Rocha, João B. T., Piccoli, B. C., & Oliveira, C. S. (2017). Oliveirab Biological and chemical interest in selenium: a brief historical account. The Free Internet Journal for Organic Chemistry, part ii, 457–491. doi: 10.3998/ark.5550190.p009.784.

Saad, M. B., Gertner, L. R., Bona, T. D., & Santin, E. (2009). Selenium influence in the poultry immune response – review. Recent Pat Food Nutrition & Agriculture, 1(3), 243–247. doi: 10.2174/2212798410 901030243.

Shabani, R., Fakhraei, J., Yarahmadi, H. M., & Seidavi, A. (2019). Effect of different sources of selenium on performance and characteristics of immune system of broiler chickens. Revista Brasileira de Zootecnia, 48, e20180256. doi: 10.1590/rbz4820180256.

Shackih, E. V. (2009). Biohimicheskij sostav krovi brojlerov pri ispol'zovanii razlichnyh form selena. Agrarnyj vestnik Urala, 3, 76–78 (in Russian).

Shevchenko, A. I., Nozdrin, G. A., & Smolovskaja, O. V. (2009). Morfologicheskie pokazateli krovi gusej pri skarmlivanii im probiotika “Vetom 1.1”, selena i ih kompleksa. Sibirskij vestnik sel'skohozjajstvennoj nauki, 4, 50–54 (in Russian).

Shirsat, S., Kadam, A., Mane, R. S., Jadhav, V. V., Zate, M. K., Naushad, Kwang, M., & Kim, K. H. (2016). Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken. Dalton Transaction, 45(21), 8845–8853. doi: 10.1039/c6dt00120c.

Shojadoost, B., Kulkarni, R. R., Yitbarek, A., Laursen, A., Taha-Abdelaziz, K., Alkie, T. N., Barjesteh, N., Quinteiro-Filho, W. M, Smith, T. K., & Sharif, S. (2019). Dietary selenium supplementation enhances antiviral immunity in chickens challenged with low pathogenic avian influenza virus subtype H9N2. Vet Immunol Immunopathol, 207, 62–68. doi: 10.1016/j.vetimm.2018.12.002.

Sobolev, A. I., Gutyj, B. V., Petryshak, O. I., Golodjuk, I. P., Petryshak, R. A., & Naumyuk, O. S. (2017). Morphological and biochemical blood indicators of ducklings, which are raised for the purpose of meat with the different level of selenium in feeding-stuffs. Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj, 19(74), 57–62. doi: 10.15421/nvlvet7413.

Sobolev, O., Gutyj, B., Petryshak, R., Pivtorak, J,. Kovalskyi, Y., Naumyuk, A., Petryshak, O., Semchuk, I., Mateusz, V., Shcherbatyy, A., & Semeniv, B. (2018). Biological role of selenium in the organism of animals and humans. Ukrainian Journal of Ecology, 8(1), 654–665. doi: 10.15421/2017_263.

Sobolev, O. I. (2010). Rekomendacii' shhodo vykorystannja selenu v godivli m’jasnogo molodnjaku sil's'kogospodars'koi' ptyci. “PP Kozhura V.V.”, Bila Cerkva (in Ukrainian).

Surai, P. F. (2018). Selenium in poultry nutrition and health. Wageningen Academic Publishers, Hardback. doi: 10.3920/978-90-8686-865-0.

Surai, P. F., & Taylor-Pickard, J. A. (2008). Current advancer in selenium research and applications. Hardback. doi: 10.3920/978-90-8686-642-7.

Tsuneda, P., Tsuneda, B., Hatamoto-Zervoudakis, L., Zervoudakis, J., Marinho, W., Junior, M., Araújo, E., Motheo, T., & Silva, L. (2019). Dietary selenium supplementation and sperm quality in brangus bulls semen. Ciencia Animal Brasileira, 20, e-48586. doi: 10.1590/1089-6891v20e-48586.

Vijayakumar, E. P., & Damodaran, K. (2015). Economics of poultry farming: a critical review. International Journal of Economic and Business Review, 3(8), 63–67.

Wahyono, N. D., & Utami, M. M. D. (2018). A Review of the Poultry Meat Production Industry for Food Safety in Indonesia. Journal of Physics: Conference Series, 953(1), 012125. doi: 10.1088/1742-6596/953/1/012125.

Wallenberg, M., Misra, S., Wasik, A.M., Marzano, C., Björnstedt, M., Gandin, V., & Fernandesa, A. P. (2014). Selenium induces a multi-targeted cell death process in addition to ROS formation. Journal of Cellular and Molecular Medicine, 18(4), 671–684. doi: 10.1111/jcmm.12214.

Zeng, H., Cao, J. J., & Combs, G. F. (2013). Selenium in bone health: roles in antioxidant protection and cell proliferation. Nutrients, 5(1), 97–110. doi: 10.3390/nu5010097.

Abstract views: 6
PDF Downloads: 0
How to Cite
Sobolieva, S., Gutyj, B., & Sobolev, O. (2020). Changes in goslings’ blood pattern under the influence of different doses additives of selenium in forages. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 22(92), 50-55.

Most read articles by the same author(s)

1 2 3 > >>