Microelement (Mn, Zn, Cu, Fe, Co, І) levels in quails and their eggs according to their forms and dosage in poultry diet

Keywords: quails, bioelements, nanocitrate


The paper presents a fragment of a systemic study on the efficiency of replacing inorganic salts of microelements in guaranteed mineral premixes used in quail feed with a complex supplement of said elements in nanocitrate form produced by Nanomaterials and Nanotechnologies LLC (Kyiv). The study is, in particular, focused on the levels of microelements (Mn, Zn, Cu, Fe, Co, І) in quails and their egg yolks depending on the form and concentration of those microelements in the poultry diet. The tests have been conducted on 14-day old Pharaoh quails divided into three groups. Raising conditions – cages. Test duration – 2 months. Quails of all groups were fed complete feed with a balanced content of nutrients and biologically active compounds. Control group birds were given mineral premix containing inorganic salts of (g/t of feed): Mn – 50, Zn ‒ 50, Cu ‒ 2.5, Fe ‒10, Co ‒1 and І ‒ 0.7. Test group quails were fed a mineral complex of aqua citrates of the same elements with a concentration of (calculated for each element) 1/10 (D1) and 1/20 (D2) or 10 and 5 % of their content in a standard mineral premix (SP). It is established that the form and dosage of microelements introduced into the diet affect their levels in quails and their egg yolks. Nanocitrates of bioelements have a relatively high cumulative potential in poultry compared with the control group (an inorganic form of microelements). The best results are achieved with citrate elements being fed in a concentration of 10% of their regular content in a standard mineral premix. It is proven that the use of optimal concentration of aqua citrates of microelements in poultry diet promotes increased levels of manganese, iron, zinc, copper and cobalt (Р < 0.05‒0.001) in the liver and hip muscles as well as iron and copper levels (Р < 0.01‒0.001) in breast muscles of quails; increased body weight by 15.7 % during the testing period; an enhanced biological value of the eggs (increased calcium (Р < 0.05), iodine (Р < 0.05), zinc (Р < 0.01) levels) compared to analogs in the control group.


Antoniak, H. L., Vazhnenko, O. V., & Panas, N. Ie. (2011). Biolohichna rol Kuprumu ta Kuprumvmisnykh bilkiv v orhanizmi liudyny i tvaryn. Naukovyi visnyk LNUVMB imeni S. Z. Gzhytskoho, 13(2), 322‒332. URL: http://nbuv.gov.ua/UJRN/ nvlnu_2011_13_2(1)_67 (in Ukrainian).

Brandão, Н., Gern, J., Guimarães, А., & Langoni1, Н. (2013). Nanotechnology and Antimicrobials in Veterinary Medicine. Formatex, 2, 543‒556.

Christensen, V. L., Donaldson, W. E., Nestor, K. E., & McMurtry, J. P. (1999). Effects of genetics and maternal dietary iodide supplementation on glycogen content of organs within embryonic turkeys. Poult. Sci., 78(6), 890‒898. doi: 10.1093/ps/78.6.890.

Das, А., Das, S., Swain, R., Sahoo, G., & Behura, N. (2014). Effects of organic minerals supplementation on growth, bioavailability and immunity in layer chicks. J. Pharmacol, 10(5), 237‒247. doi: 10.3923/ijp.2014.237.247.

Ibatullin, I. I., Melnyk, Yu. F., Otchenashko, V. V., Sychov, M. Iu., Kryvenok, M. Ia., Chyhryn, A. I., Kondratiuk, V. M., Ilchuk, I. I., Umanets, D. P., Yatsenko, O. V., Balanchuk, I. M., Holubiev, M. I., Kononenko, V. K., Stoliuk, V. D., & Panasenko, Yu. O. (2015). Praktykum z hodivli silskohospodarskykh tvaryn: navchalnyi posibnyk. Kyiv (in Ukrainian).

Kelleher, S., & Lonnerdal, В. (2006). Zinc supplementation reduces iron absorption through age-dependent changes in small intestine iron transporter expression in suckling rat pups. J. Nutr., 136(5), 1185‒1191. doi: 10.1093/jn/136.5.1185.

Medvid, S.M., Hunchak, A.V., Hutyi, B.V., & Ratych, I. B. (2017). Perspektyvy ratsionalnoho zabezpechennia kurchat-broileriv mineralnymy rechovynamy. Naukovyi visnyk LNUVMB imeni S. Z. Gzhytskoho, 19(79), 127‒134. doi: 10.15421/nvlvet7925 (in Ukrainian).

Mueller, С., Burggren, W. Н., & Tazawa Н. (2015). The Physiology of the Avian Embryo [In book: Sturkie's Avian Physiology], 739‒766.

Scott, N. R. (2005). Nanotechnology and animal health. Rev. Sci. Tech. Off. Int. Epiz., 24(1), 425‒432. doi: 10.20506/rst.24.1.1579.

Soboliev, O. I. (2017). Mihratsiia selenu u bioheokhimichnomu lantsiuzi: grunt – voda – roslyna – produktsiia ptakhivnytstva – liudyna. Ukrainian Journal of Ecology, 7(2), 92‒200. doi: 10.15421/2017_36 (in Ukrainian).

Trakhtenberh, I. M., Chekman, I. S., & Lynnyk, V. O. (2013). Vzaiemodiia mikroelementiv: biolohichnyi, medychnyi i sotsialnyi aspekty. Visn. NAN Ukrainy, 6, 11‒20. URL: http://nbuv.gov.ua/UJRN/ vnanu_2013_6_4 (in Ukrainian).

Vern, L. C., Ort, D. T., & Grimes, J. L. (2003). Physiologi-cal factors associated with weak neonatal poults (Meleagris gallopavo). Poult. Sci., 2(1), 7‒14. doi: 10.3923/ijps.2003.7.14.

Wood, C. M., Farrel, A. P., Brauner, C. J. (2012). Homeostasis and toxicology of essential metals. Fish Physiol Academic Press: London. 31A.

Yonov, Y. A., Mykytiuk, D. N., & Kots, V. P. (2000). Raspredelenye tsynka v orhanyzme kur-nesushek v zavysymosty ot eho soderzhanyia v ratsyone. Ptytsevodstvo, 49, 68‒75 (in Ukrainian).

Abstract views: 88
PDF Downloads: 39
How to Cite
Hunchak, A., Medvid, S., Stefanyshyn, O., Sirko, Y., & Koretchuk, S. (2021). Microelement (Mn, Zn, Cu, Fe, Co, І) levels in quails and their eggs according to their forms and dosage in poultry diet. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 23(94), 50-55. https://doi.org/10.32718/nvlvet-a9410