Correlations between microsatellite DNA heterozygosity and reproductive traits in Large White sows

Keywords: microsatellite DNA, heterozygosity-fitness correlations, outbreeding depression, reproductive traits, sows, Large White pig.


The main aim of this paper was to determine whether heterozygosity (assessed using microsatellite genotypes) was correlated with the reproductive traits in sows. The study was conducted on two herds of sows of the Large White sows breed at the Limited Liability Company “Tavriys’ki svyni” (Kherson region, Ukraine) and the Agricultural Private Enterprise “Techmet-Yug” (Mykolayiv region, Ukraine). During the study, we used eleven microsatellite loci recommended by International Society for Animal Genetics (ISAG) – S0101, S0155, S0228, S0355, S0386, Sw24, Sw72, Sw240, Sw857, Sw936 and Sw951. The litter records included information on the total number of piglets born (TNB), number of piglets born alive (NBA), number of stillborn piglets (NSB), frequency of stillborn piglets (FSB), litter size at weaning (NW) in the first five parities. Individual heterozygosity estimates (for each microsatellite loci separately) and microsatellite multilocus heterozygosity (for all used loci) estimates (MLH) were used in our analysis. ANOVA was used to determine the relationship of the dependent effects (reproductive traits) to single locus heterozygosity using two classes: 0 (for homozygous individuals) and 1 (for heterozygous individuals). In addition, the following indicators were calculated for each genotype: the squared distances (d2) between alleles within an individual for each microsatellite loci and mean squared distances (mean d2) between alleles within an individual for 11 microsatellite loci. Spearman’s rank correlation coefficients were used to measure the association between d2 (for each microsatellite loci) and reproductive traits in sows. ANOVA on reproductive traits of sows belonging to different MLH and mean d2 classes was also undertaken. For sows from the Agricultural Private Enterprise “‘Techmet-Yug” were observed negative associations between heterozygosity and reproductive traits. We conclude that care should be taken when crossing between different breeders (English and Hungarian selection) to avoid outbreeding depression.


Agatep, R. C. (2015). Microsatellite loci heterozygosity and fitness correlations among three genetic groups of domesticated mallard ducks (Anas platyrhynchos domesticus L.) in the Philippines. Journal of Agricul-tural Technology, 11(7), 1439–1447. URL: https://www.

Appleyard, S. A., Renwick, J. M., & Mather, P. B. (2001). Individual heterozygosity levels and relative growth performance in Oreochromis niloticus (L.) cultured under Fijian conditions. Aquaculture Research, 32(4), 287–296. doi: 10.1046/j.1365-2109.2001.00557.x.

Bjelland, D. W., Weigel, K. A., Vukasinovic, N., & Nkru-mah, J. D. (2013). Evaluation of inbreeding depression in Holstein cattle using whole-genome SNP markers and alternative measures of genomic inbreeding. Journal of Dairy Science, 96(7), 4697–4706. doi: 10.3168/jds.2012-6435.

Chapman, J. R., Nakagawa, S., Coltman, D. W., Slate, J., & Sheldon, B. C. (2009). A quantitative review of het-erozygosity–fitness correlations in animal popula-tions. Molecular Ecology, 18(13), 2746–2765. doi: 10.1111/j.1365-294X.2009.04247.x.

Coulson, T. N., Pemberton, J. M., Albon, S. D., Beaumont, M., Marshall, T. C., Guinness, F. E., & Clutton-Brock, T. H. (1998). Microsatellites reveal heterosis in red deer. Proceedings of the Royal Society of London. Se-ries B: Biological Sciences, 265(1395), 489–495. doi: 10.1098/rspb.1998.0321.

Curik, I., Zechner, P., Sölkner, J., Achmann, R., Bodo, I., Dovc, P., Kavar, T., Marti, E., & Brem, G. (2003). In-breeding, microsatellite heterozygosity, and morpho-logical traits in Lipizzan horses. Journal of Heredity, 94(2), 125–132. doi: 10.1093/jhered/esg029.

Driscoll, E. E., Hoffman, J. I., Green, L. E., Medley, G. F., & Amos, W. (2011). A preliminary study of genetic factors that influence susceptibility to bovine tubercu-losis in the British cattle herd. PLoS One, 6(4), e18806. doi: 10.1371/journal.pone.0018806.

Frankham, R., Ballou, J. D., Eldridge, M. D., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Pre-dicting the probability of outbreeding depression. Conservation Biology, 25(3), 465–475. doi: 10.1111/j.1523-1739.2011.01662.x.

González-Recio, O., De Maturana, E. L., & Gutiérrez, J. P. (2007). Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. Journal of Dairy Science, 90(12), 5744–5752. doi: 10.3168/jds.2007-0203.

Han, Y. G., Liu, G. Q., Jiang, X. P., Liang, G. M., He, C. B., Wang, D. W., Wu, Y., Xiang, X. L., Hu, J., & Peng, Y. Q. (2013). Investigation of individual heterozygosi-ty correlated to growth traits in Tongshan Black-boned goat. Molecular Biology Reports, 40(11), 6075–6079. doi: 10.1007/s11033-013-2717-x.

Iversen, M. W., Nordbø, Ø., Gjerlaug-Enger, E., Grindflek, E., Lopes, M. S., & Meuwissen, T. (2019). Effects of heterozygosity on performance of purebred and crossbred pigs. Genetics Selection Evolution, 51(1), 1–13. doi: 10.1186/s12711-019-0450-1.

Jiang, X. P., Liu, G. Q., & Xiong, Y. Z. (2005). Investiga-tion of gene and microsatellite heterozygosities corre-lated to growth rate in the Chinese Meishan pig. Asian-Australasian Journal of Animal Sciences, 18(7), 927–932. doi: 10.5713/ajas.2005.927.

Jiang, X. P., Liu, G. Q., Wang, C., Mao, Y. J., & Xiong, Y. Z. (2004). Milk trait heritability and correlation with heterozygosity in yak. Journal of Applied Genetics, 45(2), 215–224. URL: https://pubmed.ncbi.nlm.nih. gov/15131352.

Kashtanov, S. N., Lazebny, O. E., & Gracheva, S. V. (2003). Fitness characteristics and allozyme heterozy-gosity in an artificial population of the sable Martes zibellina L. Russian Journal of Genetics, 39(12), 1438–1441. doi: 10.1023/B:RUGE.0000009160.16142.9e.

Kramarenko, S. S., Lugovy, S. I., Lykhach, A. V. & Kra-marenko, O. S. (2019). Analiz biometrychnykh danykh u rozvedenni ta selektsiyi tvaryn [Analysis of biometric data in animal breeding and selection]. MNAU, Mykolayiv (in Ukrainian).

Kislinskaya A. I. (2013). Otkormochnye i myasnye kachestva chistoporodnogo molodnyaka sviney krupnoy beloy porody vengerskoy selektsii i ikh pomesey v postadaptatsionnyy period [Fattening and meat qualities of purebred pig young growth of the hungarian selection Large White breed and their hy-brids in postadaptation period]. The Bulletin of Kras-noyarsk agrarian University, 10, 167–171 (in Rus-sian).

Kyslynska, A. I. (2012). Termorehuliatsiia orhanizmu svynei importnyi populiatsii v protsesi adaptatsii na pivdni Ukrainy [Thermoregulation in pigs of foreign populations during their adaptation to the conditions of southern Ukraine]. Taurida Scientific Herald. Se-ries: Rural Sciences, 78(2(1), 76–81 (in Ukrainian).

Lieutenant-Gosselin, M., & Bernatchez, L. (2006). Local heterozygosity-fitness correlations with global positive effects on fitness in threespine stickleback. Evolution, 60(8), 1658–1668. doi: 10.1111/j.0014-3820.2006.tb00510.x.

Liu, G. Q., Jiang, X. P., Wang, J. Y., & Wang, Z. Y. (2006). Correlations between heterozygosity at microsatellite loci, mean d2 and body weight in a Chinese native chicken. Asian-Australasian Journal of Animal Sci-ences, 19(12), 1671–1677. doi: 10.5713/ajas.2006.1671.

Liu, G. Q., Jiang, X. P., Xiong, Y., Deng, C., & Qu, Y. (2003). Effects of individual gene heterozygosity on meat quality traits in swine. Journal of Nanjing Agri-cultural University, 26(1), 56–60 (in Chinese).

Lugovoy, S. I., Kharzinova, V. R., Kramarenko, S. S., Lykhach, A. V., Kramarenko, A. S., & Lykhach, V. Y. (2018). Genetic polymorphism of microsatellite loci and their association with reproductive traits in Ukrainian meat breed pigs. Cytology and Genetics, 52(5), 360–367. doi: 10.3103/S0095452718050079.

Luís, C., Cothran, E. G., & Oom, M. D. M. (2007). In-breeding and genetic structure in the endangered Sor-raia horse breed: implications for its conservation and management. Journal of Heredity, 98(3), 232–237. doi: 10.1093/jhered/esm009.

Marshall, T. C., & Spalton, J. A. (2000). Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Animal Conservation, 3(3), 241–248. doi: 10.1111/j.1469-1795.2000.tb00109.x.

Monceau, K., Wattier, R., Dechaume-Moncharmont, F. X., Dubreuil, C., & Cézilly, F. (2013). Heterozygosi-ty-fitness correlations in adult and juvenile Zenaida dove, Zenaida aurita. Journal of Heredity, 104(1), 47–56. doi: 10.1093/jhered/ess073.

Neff, B. D. (2004). Stabilizing selection on genomic diver-gence in a wild fish population. Proceedings of the Na-tional Academy of Sciences, 101(8), 2381–2385. doi: 10.1073/pnas.0307522100.

Olano-Marin, J., Mueller, J. C., & Kempenaers, B. (2011a). Correlations between heterozygosity and re-productive success in the blue tit (Cyanistes caerule-us): an analysis of inbreeding and single locus effects. Evolution, 65(11), 3175–3194. doi: 10.1111/j.1558-5646.2011.01369.x.

Olano-Marin, J., Mueller, J. C., & Kempenaers, B. (2011b). Heterozygosity and survival in blue tits (Cy-anistes caeruleus): contrasting effects of presumably functional and neutral loci. Molecular Ecology, 20(19), 4028–4041. doi: 10.1111/j.1365-294X.2011.05177.x.

Richardson, D. S., Komdeur, J., & Burke, T. (2004). In-breeding in the Seychelles warbler: environment-dependent maternal effects. Evolution, 58(9), 2037–2048. doi: 10.1111/j.0014-3820.2004.tb00488.x.

Saura, M., Fernández, A., Varona, L., Fernández, A. I., de Cara, M. Á. R., Barragán, C., & Villanueva, B. (2015). Detecting inbreeding depression for reproductive traits in Iberian pigs using genome-wide data. Genetics Se-lection Evolution, 47(1), 1–9. doi: 10.1186/s12711-014-0081-5.

Singh, S. M., & Zouros, E. (1978). Genetic variation asso-ciated with growth rate in the American oyster (Crassostrea virginica). Evolution, 32(2), 342–353. doi: 10.1111/j.1558-5646.1978.tb00650.x.

Smith, E. M., Hoffman, J. I., Green, L. E., & Amos, W. (2012). Preliminary association of microsatellite het-erozygosity with footrot in domestic sheep. Livestock Science, 143(2–3), 293–299. doi: 10.1016/j.livsci.2011.10.009.

Soulsbury, C. D., & Lebigre, C. (2018). Viability selection creates negative heterozygosity-fitness correlations in female Black Grouse Lyrurus tetrix. Journal of Orni-thology, 159(1), 93–101. doi: 10.1007/s10336-017-1474-3.

Valilou, R. H., Sarskanroud, M. R., Rafat, S. A., Ebrahimi, M., Firouzamandi, M., & Mohammadi, S. A. (2016). Association between footrot resistance and microsat-ellite polymorphisms of ovar-DRB1 and BMC5221 loci in Iranian Ghezel sheep. Revue de Medecine Vet-erinaire, 167(11-12), 316–322. URL:

von Hardenberg, A., Bassano, B., Festa-Bianchet, M., Luikart, G., Lanfranchi, P., & Coltman, D. (2007). Age-dependent genetic effects on a secondary sexual trait in male Alpine ibex, Capra ibex. Molecular Ecol-ogy, 16(9), 1969–1980. doi: 10.1111/j.1365-294X.2006.03221.x.

Wu, X. L., Li, X., & Merete, F. (2001). Association of microsatellite genomic heterozygosity with inbred pig performance under successive inbreeding. Acta Genet-ica Sinica, 28(1), 20–28. URL: https://pubmed.ncbi.nlm.nih. gov/11209707 (in Chi-nese).

Zhang, J. H., Xiong, Y. Z., & Deng, C. Y. (2005). Correla-tions of genic heterozygosity and variances with het-erosis in a pig population revealed by microsatellite DNA marker. Asian-Australasian Journal of Animal Sciences, 18(5), 620–625. doi: 10.5713/ajas.2005.620.

Zouros, E. (1993). Associative overdominance: evaluat-ing the effects of inbreeding and linkage disequilibri-um. Genetica, 89(1), 35–46. doi: 10.1007/BF02424504.

Abstract views: 20
PDF Downloads: 12
How to Cite
Kramarenko, A., Kramarenko, S., Lugovoy, S., & Atamanyuk, I. (2021). Correlations between microsatellite DNA heterozygosity and reproductive traits in Large White sows. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 23(95), 45-53.

Most read articles by the same author(s)