Technologies of carp growing and their features


  • Yu. V. Loboiko Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine https://orcid.org/0000-0002-9206-8023
  • Ye. O. Barylo Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-4393-8934
  • Yu. R. Vachko Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-2241-0102
  • B. S. Barylo Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-0075-8159
  • I. R. Rachkivska Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
Keywords: extensive (grazing) technology, intensive technology, semi-intensive technology, continuous technology, carp, fish farming, fish productivity, ponds, reservoir, polyculture, artificial feed.

Abstract

Carp is one of the few fish farms for which a wide range of technologies has been developed: from extensive, with minimal human intervention in the formation of fish productivity of the reservoir, to intensive, with the most controlled production conditions. Carp has many biological features, enhanced by centuries of breeding work, making this fish extremely “technological”, able to more or less fully realize the genetically determined bioproductive properties of different breeding technologies. Technologies for growing commercial carp according to the level of intensification of the production process can be divided into extensive (grazing), semi-intensive, intensive, and continuous, as a distinct type of intensive technology for growing carp in ponds and pools. Extensive technology assumes that the fish will feed exclusively on natural food, zooplankton, and bottom fauna. In this case, the cost of growing carp will be the lowest; the fish will be called “ecological”, but the growth of individuals will be insignificant. Semi-intensive technology assumes that carp feed on natural feeds, and their energy needs are met by providing carbohydrate additives to feed. Intensive technology believes that carp feeding with compound feeds with high protein content is used, which allows achieving productivity of 3–20 tons/ha. This system requires the highest costs, although it gives the highest performance. The pond must provide additional aeration and water flow to prevent contamination of the reservoir and the development of fish diseases. The main disadvantage of popular carp growing technologies is their staging. All operations are carried out strictly one after another in specialized ponds. Moreover, each stage ends with the descent of the tanks, and the fish are transplanted several times from one to another (from spawning to juvenile, from them to nursery). During this, the carp is injured, which negatively affects its productivity and inevitably leads to waste. To remedy this, fish farming is now using continuous rearing technology. The choice of technology for growing carp is a responsible task on which the profitability of fisheries depends.

References

Al-Humairi, K. O., Al-Tameemi, R. A., & Al-Noor, S. S. (2020). Growth Performance and Feed Efficiency As-sessment of Two Groups of Common Carp (Cyprinus carpio L.) Cultivated in Iraq. Basrah Journal of Agri-cultural Sciences, 33(1), 189–199. doi: 10.37077/25200860.2020.33.1.14.

Al-Jader, F. A. M., & Al-Sulevany, R. S. (2012). Evalua-tion of common carp Cyprinus carpio L. perfor-mance fed at three commercial diets. Mesopotamia Journal of Agriculture, 40, 20–26. doi: 10.33899/magrj. 2012.60187.

Balami, S., & Pokhrel, S. (2020). Production of Common Carp (Cyprinus carpio var. communis) and Grass Carp (Ctenopharyngodon idella) Fingerling in a Poly-culture System in Chitwan, Nepal. J Aquac Fisheries, 4, 027. doi: 10.24966/AAF-5523/100027.

Bekh, V. V. (2009). Ekonomichna efektyvnist vy-roshchuvannia maloluskatoho vnutrishnoporidnoho typu ukrainskoi ramchastoi porody koropa. Ry-bohospodarska nauka Ukrainy, 2, 110–113 (in Ukrainian).

Bekh, V. V., & Oleshko, O. A. (2015). Optymizatsiia tekhnolohii vyroshchuvannia koropovykh vydiv ryb v polikulturi dlia nahulnykh stavovykh fermerskykh hospodarstv. Tekhnolohiia vyrobnytstva i pererobky produktsii tvarynnytstva, 2, 5–9 (in Ukrainian).

Chirwa, E. R., Kassam, D., Jere, W. L., & Mtethiwa, A. (2017). A review of the farming of common carp (Cy-prinus carpio L.) in Malawi: Policy research directions for aquaculture development in Malawi, 9(5), 42–51, doi: 10.5897/IJFA2017.0631.

Ćirić, M., Subakov‐Simić, G., Dulić, Z., Bjelanović, K., Čičovački, S., & Marković, Z. (2015). Effect of sup-plemental feed type on water quality, plankton and benthos availability and carp (Cyprinus carpio L.) growth in semi‐intensive monoculture ponds. Aqua-culture Research, 46(4), 777–788. doi: 10.1111/are.12230.

Gyalog, G., Oláh, J., Békefi, E., Lukácsik, M., & Popp, J. (2017). Constraining Factors in Hungarian Carp Farming: An Econometric Perspective. Sustainability, 9(11), 2111. doi: 10.3390/su9112111.

Hadjinikolova, L., Nikolova, L., & Stoeva, A. (2008). Comparative investigations on the nutritive value of carp fish meat (Cyprinidae), grown at organic aqua-culture conditions. Bul. J. Agric. Sci., 14(2), 127–132.

Hrynevych, N., Prychepa, M., Kovalenko, Yu., Vodianit-skyi, O., Svitelskyi, M., Fotin, O., Zahorui, L., Zharchynska, V., Gutyj, B., Kulish, S., Honcharenko, V., Velesyk, T., Sachuk, R., Stravsky, Ya., & Boltyk, N. (2021). The role of macrophytes in waterfowl re-production. Ukrainian Journal of Ecology, 11(2), 320–326. doi: 10.15421/2021_117.

Hrynzhevskyi, M. V., & Pshenychnyi, D. R. (2007). Vy-roshchuvannia dvolitok koropovo-sazanovykh hibrydiv u polikulturi. Rybohospodarska nauka Ukrainy, 1, 41–44 (in Ukrainian).

Ianinovych, Y. Ye., Hrytsyniak, I. I., Hrynzhevskyi, M. V., & Shvets, T. M. (2010). Polikultura — shliakh do intensyfikatsii stavovoho rybnytstva. Rybohospo-darska nauka Ukrainy, 4, 78–83 (in Ukrainian).

Kestemont, P. (1995). Different systems of carp produc-tion and their impacts on the environment. Aquacul-ture, 129(1-4), 347–372. doi: 10.1016/0044-8486(94)00292-v.

Khan, M. N., Shahzad, K., Chatta, A., Sohail, M., Piria, M., & Treer, T. (2016). A review of introduction of common carp Cyprinus carpio in Pakistan: origin, purpose, impact and management. Croatian Journal of Fisheries, 74, 71–80. doi: 10.1515/cjf-2016-0016.

Koba, S. A., Hryhorenko, T. V., & Krazhan, S. A. (2013). Zhyvlennia ta rist tsoholitok koropa za spriamovano-ho formuvannia pryrodnoi kormovoi bazy. Rybohos-podarska nauka Ukrainy, 1, 38–44 (in Ukrainian).

Kofonov, K., Potrokhov, О., Hrynevych, N., Zinkovskyi, O., Khomiak, O., Dunaievska, O., Rud, O., Kutsocon, L., Chemerys, V., Gutyj, B., Fijalovych, L., Vavrysevych, J., Todoriuk, V., Leskiv, K., Husar, P., & Khumynets, P. (2020). Changes in the biochemical status of common carp juveniles (Cyprinus carpio L.) exposed to ammonium chloride and potassium phos-phate. Ukrainian Journal of Ecology, 10(4), 137–147. doi: 10.15421/2020_181.

Kolesnyk, N. L. (2011). Rozpodil vazhkykh metaliv u lankakh hidroekosystemy staviv za intensyvnoi tekhnolohii vyroshchuvannia ryby. Rybohospodarska nauka Ukrainy, 3, 105–111 (in Ukrainian).

Kovalenko, V. O., Volichenko, Yu. M., & Sherman, I. M. (2014). Shliakhy optymizatsii ta prohnozuvannia vy-roshchuvannia tsoholitok koropovykh vydiv ryb v umovakh pivdnia Ukrainy. Rybohospodarska nauka Ukrainy, 2, 46–54 (in Ukrainian).

Li, X., Yan, Q., Xie, S., Hu, W., Yu, Y., Hu, Z. (2013). Gut Microbiota Contributes to the Growth of Fast-Growing Transgenic Common Carp (Cyprinus carpio L.). PLoS ONE, 8(5), e64577. doi: 10.1371/journal.pone.0064577.

Loboiko, Yu. V., Barylo, Ye. O., & Barylo, B. S. (2020). Assessment of macrocyclic lacton group products for ectoparasitosis of carp. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(98), 16–21. doi: 10.32718/nvlvet9803.

Lu, X., Chen, H. M., Qian, X. Q., & Gui, J. F. (2020). Tran-scriptome analysis of grass carp (Ctenopharyngodon idella) between fast-and slow-growing fish. Compara-tive Biochemistry and Physiology Part D: Genomics and Proteomics, 35, 100688. doi: 10.1016/j.cbd.2020.100688.

Marković, Z., Stanković, M., Rašković, B., Dulić, Z., Živić, I., & Poleksić, V. (2016). Comparative analysis of using cereal grains and compound feed in semi-intensive common carp pond production. Aquaculture international, 24(6), 1699–723. doi: 10.1007/s10499-016-0076-z.

Martseniuk, N. O. (2017). Stavovo-sadkova tekhnolohiia vyroshchuvannia ryby. Visnyk Sumskoho natsional-noho ahrarnoho universytetu. Seriia: Tvarynnytstvo, 5(2), 70–74 (in Ukrainian).

Mojer, A. M., Taher, M. M., & Al-Tameemi, R. A. (2021). Comparison of Growth for Cultivated Common carp, Cyprinus carpio Larvae between Earthen Ponds and Recirculation Aquaculture System. Basrah Journal of Agricultural Sciences, 34(1), 192–205. doi: 10.37077/25200860.2021.34.1.17.

Nikolova, L. (2013). Impact of Some Technological Fac-tors on The Growth of Carp Fish Cyprinidae Reared in Autochthonous Polyculture. Bulgarian Journal of Ag-ricultural Science, 19(6), 1391–1395. URL: http://agrojournal.org/19/06-33.

Prychepa, M., Hrynevych, N., Kovalenko, Yu., Vodianit-skyi, O., Svitelskyi, M., Khomiak, O., Prysiazhniuk, N., Ishchuk, O., Sliusarenko, A., Kunovskii, J., Mihalskiy, O., Heiko, L., Trofymchuk, A., Gutyj, B., & Lev-kivska, N. (2021). Diversity of aquatic animals in wa-ter bodies Opechen' (Dnipro floodplain, Ukraine). Ukrainian Journal of Ecology, 11(3), 285–291. doi: 10.15421/2021_173.

Prychepa, M., Hrynevych, N., Martseniuk, V., Potrokhov, О., Vodianitskyi, O., Khomiak, O., Rud, O., Kytsokon, L., Sliusarenko, A., Dunaievska, O., Gutyj, B., Pukalo, P., Honcharenko, V., Yevtukh, L., Bozhyk, L., Prus, V., & Makhorin, H. (2021). Rudd (Scardinius Erythrophthalmus l., 1758) as a bioindicator of an-thropogenic pollution in freshwater bodies. Ukrainian Journal of Ecology, 11(2), 253–260. doi: 10.15421/2021_108.

Pshenychnyi, D. R., Hrytsyniak, I. I., Hrynzhevskyi, M. V., & Shvets, T. M. (2009). Ekonomichna efektyvnist vyroshchuvannia dvolitok koropiv u stavakh u polikulturi z roslynoidnymy rybamy za intensyvnoiu tekhnolohiieiu. Rybohospodarska nauka Ukrainy, 4, 104–109 (in Ukrainian).

Rahman, M. M. (2015). Role of common carp (Cyprinus carpio) in aquaculture production systems. Frontiers in Life Science, 8(4), 399–410, doi: 10.1080/21553769.2015.1045629.

Ross, L. G., Martinez Palacios, C. A., & Morales, E. J. (2008). Developing native fish species for aquacul-ture: the interacting demands of biodiversity, sustain-able aquaculture and livelihoods. Aquaculture Re-search, 39(7), 675–683. doi: 10.1111/j.1365-2109.2008.01920.x.

Shava, E., & Gunhidzirai, C. (2017). Fish farming as an innovative strategy for promoting food security in drought risk regions of Zimbabwe. Jamba, 9(1), 491. doi: 10.4102/jamba.v9i1.491.

Szücs, I., Stundi, L., & Váradi, L. (2007). Carp farming in Central and Eastern Europe and a case study in multi-functional aquaculture. In: Leung, P.S., Lee, C.S., O’Bryan, P.J. (Eds.), Species and System Selection for Sustainable Aquaculture. Blackwell Publishing, Ames, 389–413. doi: 10.1002/9780470277867.ch26.

Vachko, Yu. R., Barylo, Ye. O., & Chmyr, K. I. (2020). The results of cultivation and changes in fish and bio-logical indicators of this year carp when using feed additives NuPro® та Bio-Mos. Scientific Messenger LNUVMB. Series: Agricultural sciences, 22(93), 40–44, doi: 10.32718/nvlvet‐a9307.

Van Niekerk, J. A., & Moloi, Z. (2018). Introduction of extensive cage culture systems for breeding of catfish (Сlarius gariepinus) and common carp (Сyprin car-pionus) at the aquaculture technology demonstration centre, Xhariep District: an agricultural extension per-spective. South African Journal of Agricultural Exten-sion, 46(1), 106–112. doi: 10.17159/2413-3221/2018/v46n1a466.

Vodianitskyi, O., Potrokhov, О., Hrynevych, N., Khomiak, O., Khudiyash, Y., Prysiazhniuk, N., Rud, O., Sliusarenko, A., Zagoruy, L., Gutyj, B., Dushka, V., Maxym, V., Dadak, O., & Liublin, V. (2020). Effect of reserviour temperature and oxygen conditions on the activity of Na-K pump in embrios and larvae of perch, roach, and ruffe. Ukrainian Journal of Ecology, 10(2), 184–189. doi: 10.15421/2020_83.

Vseticková, L., Adamek, Z., Rozkosný, M., & Sedlacek, P. (2012). Effects of semi-intensive carp pond farming on discharged water quality. Acta ichthyologica et piscatoria, 42(3), 223–231. doi: 10.3750/aip2011.42.3.06.

Abstract views: 35
PDF Downloads: 21
Published
2021-12-11
How to Cite
Loboiko, Y., Barylo, Y., Vachko, Y., Barylo, B., & Rachkivska, I. (2021). Technologies of carp growing and their features. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 23(95), 54-59. https://doi.org/10.32718/nvlvet-a9507