The influence of the method of manure removal and storage on the quality of organic products

Keywords: dairy cows, deep litter, bioreactor-fermenter, open lagoon, organic fertilizer.


The aim of this article was to compare the quality of manure in different ways of its removal and storage for environmental pollution. The research was conducted in three farms of Kyiv region with different methods of manure removal, storage and processing: using deep long-lasting straw litter (manure removal three times a year); with manure processing in a closed bioreactor-fermenter of the closed type; with manure settling in open lagoons. In all farms, the average annual livestock is 400 dairy cows. Samples for analysis of manure (processing waste) were taken the day before export to the field. The average daily air temperature during sampling was +21.3 °C. In terms of the sum of nitrogen, phosphorus and potassium content in 1 kg of fertilizers, the highest indicators were observed for the variant of keeping in deep litter – 7.69 g. intermediate bioreactors-fermenters observed intermediate values – 6.69 g. The highest moisture content of manure was during storage in the lagoon – by 19.71 % and 1.38 % more compared to the option on deep litter and in the bioreactor-fermenter. The lowest number of weed seeds was for storage in deep litter – 84 pcs/ml, which is 19 and 23 pcs/ml more than for processing in a bioreactor-fermenter and storage in the lagoon. The indicator of weed germination, which is very important from the point of view of future use of manure as an organic fertilizer in general, had positive indicators for all storage (processing) options. The germination rate of weeds for storage in deep litter was 5.72 %, which is 3.14 and 4.42 % less than for processing in a bioreactor-fermenter and in the lagoon. The largest emissions of N2O (nitric oxide) were in the variant of manure storage in the lagoon – 40712.45 kg, which is 39781.88 kg more than in the options of storage in deep litter and in the bioreactor-fermenter. The content of nitrogen, phosphorus, potassium and organic matter of fertilizer obtained from 1 kg of manure from deep litter, exceeded similar indicators of other methods of storage due to daily application of straw.


Amon, T., Amon B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure–Influence of bi-omass composition on the methane yield. Agriculture, Ecosystems and Environment, 118, 173–182. doi: 10.1016/j.agee.2006.05.007.

Barret, M., Gagnon, N., Topp, E., Masse, L., Massé, D. I., & Talbot, G. (2013). Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: Spatio-temporal variations and impact on methanogenic activity. Water Research, 47(2), 26–40. doi: 10.1016/j.watres.2012.10.047.

Borshch, O. O., Borshch, O. V., Donchenko, T. A., Kosior, L. T., & Pirova, L. V. (2017). Influence of low temper-atures on behavior, productivity and bioenergy pa-rameters of dairy cows kept in cubicle stalls and deep litter system. Ukrainian Journal of Ecology, 7(3), 73–77. doi: 10.15421/2017_51.

Borshch, O. O., Ruban, S. Yu., Gutyj, B. V., Borshch, O. V., Sobolev, O. I., Kosior, L. T., Fedorchenko, M. M., Kirii, A. A., Pivtorak, Y. I., Salamakha, I. Yu., Hordiichuk, N. M., Hordiichuk, L. M., Kamratska, O. I., Denkovich, B. S. (2020a). Comfort and cow behav-ior during periods of intense precipitation. Ukrainian Journal of Ecology, 10(6), 98–102. doi: 10.15421/2020_265.

Borshch, O. O., Gutyj, B. V., Borshch, O. V., Sobolev, O. I., Chernyuk, S. V., Rudenko, O. P., Kalyn, B. M., Lytvyn, N. A., Savchuk, L. B., Kit, L. P., Nahirniak, T. B., Kropyvka, S. I., & Pundyak, T. O. (2020b). Environmental pollution caused by the manure storage. Ukrainian Journal of Ecology, 10(3), 110–114. doi: 10.15421/2020_142.

Borshch, O. O., Borshch, O. V., Sobolev, O. I., Nadtochii, V. M., Slusar, M. V., Gutyj, B. V., Polishchuk, S. A., Malina, V. V., Korol, A. P., Korol-Bezpala, L. P., Bezpalyi, I. F., & Cherniavskyi, O. O. (2021). Wind speed in easily assembled premises with different de-sign constructions for side curtains in winter. Ukrainian Journal of Ecology, 11(1), 325–328. doi: 10.15421/2021_49.

Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in reme-diation. Bioresourse Technology, 101(14), 5222–5228. doi: 10.1016/j.biortech.2010.02.052.

Coats, E. R., Gregg, M., & Crawford, R. L. (2011). Effect of organic loading and retention time on dairy manure fermentation. Bioresourse Technology, 102(3), 2572–2577. doi: 10.1016/j.biortech.2010.11.108.

Coats, E. R., Watson, B. S., & Brinkman, C. K. (2016). Polyhydroxyalkanoate Synthesis by Mixed Microbial Consortia Cultured on Fermented Dairy Manure: Effect of Aeration on Process Rates/Yields and the Associated Microbial Ecology. Water Research, 106, 26–40. doi: 10.1016/j.watres.2016.09.039.

Food and Agriculture Organization of the United Nations (FAO). The Impact of Disasters on Agriculture – Assessing the information gap, available at: (last access: 21 December 2020), 2017.

GOST 26715–85. Udobreniya organicheskie. Metodyi opredeleniya obschego azota. Vved. 1987–01–01. – M.: Gosudarstvennyiy komitet SSSR po standartam, 1986. 12 s (in Russian).

GOST 26717–85. Udobreniya organicheskie. Metodyi opredeleniya obschego fosfora. Vved. 1987– 01–01. – M.: Gosudarstvennyiy komitet SSSR po standar-tam, 1986. 6 s (in Russian).

GOST 26718–85. Udobreniya organicheskie. Metodyi opredeleniya obschego kaliya. Vved. 1987–01–01. – M.: Gosudarstvennyiy komitet SSSR po standartam, 1986. 4 s (in Russian).

Hanson, A. J., Guho, N. M., Paszczynski, A. J., & Coats, E. R. (2016). Community proteomics provides func-tional insight into polyhydroxyalkanoate production by a mixed microbial culture cultivated on fermented dairy manure. Applied Biochemistry and Biotechnol-ogy, 100(18), 7957–7976. doi: 10.1007/s00253-016-7576-7.

Hoffmann, R. A., Garcia, M. L., Veskivar, M., Karim, K., Al-Dahhan, M. H., & Angenent, L. T. (2007). Effect of Shear on Performance and Microbial Ecology of Con-tinuously Stirred Anaerobic Digesters Treating Animal Manure. Biotechnology and Bioengineering, 100, 38–48. doi: 10.1002/BIT.21730.

Janzen, R. A., McGill, W. B., Leonard, J. J., & Jeffrey, S. R. (1999). Manure as a resource–ecological and eco-nomic considerations in balance. Transactions of the ASAE, 42(5), 1261–1274. doi: 10.13031/2013.13291.

Resende, J. A., Silva, V. L., Rocha de Oliveira, T. M., For-tunato, S. O., Carneiro, J. C., Otenio, M. H., & Diniz, C. G. (2014). Prevalence and persistence of potentially pathogenic and antibiotic resistant bacteria during anaerobic digestion treatment of cattle manure. Bio-resourse Technology, (153), 284–291. doi: 10.1016/j.biortech.2013.12.007.

Ruban, S. Yu., Borshch, O. V., & Borshch, O. O. (2017). Suchasni tekhnolohiyi vyrobnytstva moloka. (osoblyvosti ekspluatatsiyi, tekhnolohichni rishennya, eskizni proekty) [Modern milk production technolo-gies. (Рeculiarities of operation, technological deci-sions, sketch designs)]. Kharkiv: STYLIZDAT (in Ukrainian).

Ruban, S., Borshch, O. O., Borshch, O. V., Orischuk, O., Balatskiy, Y., Fedorchenko, M., Kachan, A., & Zlochevskiy, M. (2020). The impact of high temperatures on respiration rate, breathing condition and productivity of dairy cows in different production systems. Animal Science Papers and Reports, 38(l), 61–72.

Rukovodyaschie printsipyi natsionalnyih inventarizatsiy parnikovyih gazov MGEIK, 2006. 73 s (in Russian).

Stowe, E. J., Coats, E. R., & Brinkman, C. K. (2015). Dairy manure resource recovery utilizing two-stage anaerobic digestion – implications of solids fractiona-tion. Bioresourse Technology, 198, 237–245. doi: 10.1016/j.biortech.2015.09.017.

Tien, Y. C., Li, B., Zhang, T., Scott, A., Murray, R., Sabou-rin, L., Marti, R., & Topp, E. (2017). Impact of dairy manure pre-application treatment on manure compo-sition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vege-tables at harvest. Science of The Total Environment, 581–582(1), 32–39. doi: 10.1016/j.scitotenv.2016.12.138.

Toumi, J., Miladi, B., Farhat, A., Nouira, S., Hamdi, M., Gtari, M., & Bouallagu, H. (2015). Microbial ecology overview during anaerobic codigestion of dairy wastewater and cattle manure and use in agriculture of obtained bio-fertilisers. Bioresourse Technology, 198, 141–149. doi: 10.1016/j.biortech.2015.09.004.

Walsh, J. J., Rousk, J., Edwards-Jones, G., Jones, D. L., & Williams, A. P. (2012). Fungal and bacterial growth following the application of slurry and anaerobic di-gestate of livestock manure to temperate pasture soils. Biology and Fertility of Soils, 48, 889–897.

Wang, X., Yang, G., Feng, Y., Ren, G., & Han, X. (2012). Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresourse Technology, 120, 78–83. doi: 10.1016/j.biortech.2012.06.058.

Zhong, W., Gu, T., Wang, W., Zhang, B., Lin, X., Huang, Q., & Shen, W. (2012). The effect of mineral fertilizer and organic manure on soil microbial community and diversity. Plant and Soil, 326(1–2), 511–522. doi: 10.1007/s11104-009-9988-y.

Abstract views: 31
PDF Downloads: 24
How to Cite
Borshch, O., Borshch, O., & Fedorchenko, M. (2021). The influence of the method of manure removal and storage on the quality of organic products. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 23(95), 65-70.