Use of the mathematical models to describe egg production of the geese


Keywords: geese, egg-laying, description, T. Bridges model, F. Richards model

Abstract

The article presents the results of descriptive modeling of egg production in geese of different genotypes to create a dimorphic population. T. Bridges' model in all groups of birds overestimated the egg-laying rates in the second and fifth months of egg-laying – by 0.41–7.63 % and 4.10–6.64 %, respectively. At the same time, in the fourth month of laying, she underestimated its value – by 4.13–6.91 %.  In the middle of egg-laying, i.e., in the third month, this model most accurately described it – deviations of theoretical values from empirical ones were minimal (in the range of 0.37–2.43 %). In general, using the model of T. Bridges, the average percentage of deviations of the actual egg production from the empirical was 2.31– 4.37 %. The highest correspondence of essential indicators with those calculated among the studied groups was found in geese F2 (2.31 %). Using the model of F. Richards, similar trends in the mathematical description of egg-laying were observed. This model overestimated the value of egg production in geese of different genotype groups in the second (1.39–8.88 %) and fifth (5.00–7.43 %) months of egg-laying. In the fourth month, this model underestimated egg production in poultry in the range of 4.13–7.19 %. In general, the average percentage deviation of actual indicators theoretically determined by this model was low and was in the field of 2.47–5.07 %. Comparing the use of models of T. Bridges and F. Richards on geese of one group, we can note the higher efficiency of the first, i.e., higher accuracy of coincidence of actual and theoretical values of monthly egg production. Analysis of the coefficients of the models used among the geese of the studied groups shows that the most incredible exponential growth rate of the theoretical egg-laying curve is characteristic of the descendants of F1 and F2, while the function of T. Bridges is the lowest in the descendants of the third generation in the original breeds. According to the model of T. Bridges, the kinetic rate of increase of the theoretical curve according to the model T. Bridges is highest in birds F3, Rhine breed and created dimorphic geese, and according to the function of F. Richards – in F1, F2 and also in Rhine geese.

References

Bashchenko, M. I., Boiko, О. V., Honchar, О. F., Gutyj, B. V., Lesyk, Y. V., Ostapyuk, A. Y., Kovalchuk, І. І., & Leskiv, Kh. Ya. (2020). The effect of milk thistle, metiphen, and silimevit on the protein-synthesizing function of the liver of laying hens in experimental chronic cadmium toxicosis. Ukrainian Journal of Ecology, 10(6), 164-168. DOI: 10.15421/2020_276.

Bridges, Т. C., Turner, L. W., & Smith, E. M. (1986). A mathematical procedure for estimating animal growth and body composition. Trans. ASAE, 29(5), 1342–1347. DOI: 10.13031/2013.30320.

Ferreira, N. T., Nilva, K., & Sakomura, N. K. (2015). Mod-elling the egg components and laying patterns of broiler breeder hens. Animal Production Science, 78(10), 342–360. DOI: 10.1071/AN14737.

Hryhorenko, V. V., & Shcherbyna, O. V. (2017). Matematychnyi pidkhid v otsintsi produktyvnykh yakostei ptytsi. Aktualni pytannia suchasnoi nauky: materialy konf. (m. IvanoFrankivsk, 7–8 lypnia 2017 r.). IvanoFrankivsk, 98–100. URL: http://molodyvcheny. in.ua/files/conf/other/17july2017/32.pdf (in Ukrainian).

Javid, I., Sohai, H. K., & Nasir, M. (2016). Effects of egg size (weight) and age on hatching performance and chick quality of broiler breeder. J. Appl. Anim. Res, 44, 354–364. DOI: 10.1080/09712119.2014.987294.

Korsakov, K. V. (2020). Ispol'zovanie kormovoj dobavki Reasil® Humic Health pri vyrashhivanii indeek: rezu-l'taty i perspektivy. Pticevodstvo, 4, 16–19. DOI: 10.33845/0033-3239-2020-69-4-16-19 (in Russian).

Kovalenko, I. I. (2003). Vykorystannia matematychnykh modelei dlia otsinky parametriv rostu ptytsi riznykh klasiv rozpodilu. Tavriiskyi naukovyi visnyk, 22, 96–99 (in Ukrainian).

Kovalenko, V. P., & Bolelaja, S. Yu. (1998). Selekcion-naja model' prognozirovanija mjasnoj produktivnosti pticy. Citologija i genetika, 32(4), 55–59 (in Russian).

Krotova, N. Yu., Lavrentev, A. Yu., & Scherne, V. S. (2020). Produktivnost' cypljat-brojlerov pri is-pol'zovanii mul'tijenzimnogo preparata. Pticevodstvo, 2, 27–30. DOI: 10.33845/0033-3239-2020-69-2-27-30 (in Russian).

Kycher, E. A., & Pasechnik, M. V. (2016). Matemati-cheskoe modelirovanie dinamiki rosta i produk-tivnosti kur krossov “Hajseks braun” i “Lomann braun”. Tehnologicheskij audit i rezervy proizvodstva, 4/2(30), 38–44. DOI: 10.15587/2312-8372.2016.72833 (in Russian).

Leksrisompong, N., Romero-Sanchez, H., & Oviedo-Rondón, E.O. (2014). Effects of feeder space alloca-tions during rearing, female strain, and feed increase rate from photo stimulation to peak egg production on broiler breeder female performance. Poultry Sci, 93(5), 1045–1052. DOI: 10.3382/ps.2013-03219.

Narinc, D., Karaman, E., & Aksoy, T. (2013). Investiga-tion of nonlinear models to describe long-term egg production in Japanese quail. Poultry Sci, 92(6), 1676–1682. DOI: 10.3382/ps.2012-02511.

Narinc, D., Karaman, E., & Firat, Z. M. (2011). Compari-son of non-linear growth models to describe the growth in Japanese quail. J. Anim. Vet. Adv, 9(14), 1961–1966. DOI: 10.3923/javaa.2010.1961.1966.

Narinc, D., Uckardes, F., & Aslan, E. (2014). Egg production curve analysis in poultry science. World Poultry Sci. J, 70(4), 817–828. DOI: 10.1017/S0043933914000877.

Otwinowska-Mindur, A., Gumułka, M., & Kania-Gierdziewicz, J. (2016). Mathematical models for egg production in broiler breeder hens. Ann. Anim. Sci, 16(4), 1185–1198. DOI: 10.1515/aoas-2016-0037.

Rait, A. (2017). Pticevodstvo dlja nachinajushhih. Jeks-mo-Press (in Russian).

Richards, F. J. (1959). A flexible growth function for em-pirical use. Journal of experimental Botany, 10(29), 290–300. URL: http://www.jstor.org/stable/23686557.

Sobolev, А., Gutyj, B., Grynevych, N., Bilkevych, V., & Mashkin, Y. (2017). Enrichment of meat products with selenium by its introduction to mixed feed com-pounds for birds. Regulatory Mechanisms in Biosys-tems, 8(3), 417–422. DOI: 10.15421/021764.

Sobolev, O., Gutyj, B., Petryshak, R., Pivtorak, J., Kovalskyi, Y., Naumyuk, A., Petryshak, O., Semchuk, I., Mateusz, V., Shcherbatyy, A., & Semeniv, B. (2018). Biological role of selenium in the organism of animals and humans. Ukrainian Journal of Ecology, 8(1), 654–665. DOI: 10.15421/2017_263.

Sobolev, O., Gutyj, B., Petryszak, R., Golodjuk, I., Naumyuk, O., & Petryszak, O. (2018). The develop-ment of the digestive system in broiler chickens at dif-ferent levels of selenium into the mixed fodder. Scien-tific Messenger of Lviv National University of Veteri-nary Medicine and Biotechnologies, 20(84), 83–87. DOI: 10.15421/nvlvet8415.

Sobolev, O. I., Gutyj, B. V., Sobolievа, S. V., Shaposhnik, V. М., Sljusarenko, A. А., Stoyanovskyy, V. G., Kamratska, O. І., Karkach, P. M., Bilkevych, V. V., Stavetska, R. V., Babenko, O. I., Bushtruk, M. V., Starostenko, I. S., Klopenko, N. I., Korol’-Bezpala, L. P., & Bezpalyi, I. F. (2019). Digestibility of nutrients by young geese for use of lithium in the composition of fodder. Ukrainian Journal of Ecology, 9(1), 1–6. URL: https://www.ujecology.com/articles/digestibility-of-nutrients-by-young-geese-for-use-of-lithium-in-the-composition-of-fodder.pdf.

Sobolev, O. I., Gutyj, B. V., Sobolievа, S. V., Fesenko, V. F., Bilkevych, V. V., Babenko, O. I., Klopenko, N. I., Kachan, A. D., Kosior, L. T., Lastovska, I. O., Vered, P. I., Shulko, O. P., Onyshchenko, L. S., & Slobodeniuk, O. І. (2019). The influence of different doses of lithium additive in mixed feed on the balance of nitrogen in organism of goslings. Ukrainian Journal of Ecology, 9(2), 91–96. URL: https://www.ujecology.com/articles/the-influence-of-different-doses-of-lithium-additive-in-mixed-feed-on-the-balance-of-nitrogen-in-organism-of-goslings.pdf.

Stepanenko, N. (2020). Doslidzhennia pokaznykiv efek-tyvnosti vyrobnytstva yaiets za dopomohoiu ma-tematychnykh metodiv ta modelei. Tavriiskyi nau-kovyi visnyk. Seriia: Ekonomika, 2, 303–312. URL: http://tnv-econom.ksauniv.ks.ua/index.php/journal/article/view/80 (in Ukrainian).

Stepanenko, N. V. (2018). Matematychni metody, modeli ta informatsiini tekhnolohii v ekonomitsi. Biznes-navihator, 4(47), 189–194 (in Ukrainian).

Wencek, E., Kałużna, I., & Koźlecka, M. (2015). Perfor-mance assessment of the utilitarian and breeding val-ues of meat-type hens. The results of the assessment of the utilitarian value of poultry in 2014 (in Polish). The National Poultry Council – Chamber of Com-merce, Warsaw, 1243–1387.

Wolc, A., Graczyk, M., & Settar, P. (2015). Modified Wilmink curve for egg production analysis in layers. XXVII International Poultry Science Symposium PB WPSA “Science to practice – practice to science”, 56.

Abstract views: 0
PDF Downloads: 1
Published
2022-05-07
How to Cite
Khvostik, V., Paskevych, G., & Fijalovych, L. (2022). Use of the mathematical models to describe egg production of the geese. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 24(96), 3-8. https://doi.org/10.32718/nvlvet-a9601