Study of the localization of pigment cells in the skin of scaly carp of various ages (Cyprinus carpio L.)


Keywords: carp, skin, epidermis, dermis, hypodermis, scaly pockets, pigment, muscle fibers

Abstract

Morphological methods of fish research provide an opportunity to study their biological systems – cells, tissues, and organs in normal and pathological conditions – in depth at all levels of structural organization. The work aimed to investigate the morphological features of localization of skin pigment cells in scaly carp (Cyprinus carpio L.) of different ages. The study was conducted in the laboratory of complex ichthyopathological studies at the Department of Ichthyology and Zoology of the Belotserkiv National Agrarian University. One-, two-, and three-year-old scaly carp from the feeding ponds of PJSC Chernigivrybhosp were used. From which the scales were removed, skin samples of scaly carp (Cyprinus carpio L.) were used as material for research. Tissue samples were taken from freshly caught fish for the research. Our study established that pigment cells in carp of different ages were localized in the upper and lower layers of the dermis and hypodermis and in the lateral connective tissue septum at the level of the lateral line that divides the lateral muscles. In addition, in the carp of the same age, in contrast to the older age groups, isolated clusters of pigment cells were observed in the loose connective tissue between the muscle fibers of the superficial lateral muscle. During the histological examination, we also discovered the presence of pigment cells in the skin, particularly melanophores. Thus, the skin of peers of scaly carp was located in single clusters and had a rounded shape and a concentrated distribution of melanin pigment. Many melanophores were observed in the lower layer of the dermis at the border with the hypodermis. In the area of the lateral line, in the connective tissue septum, at the level of the deep lateral muscle, large strands of melanophores were detected.

References

Baba, E. (2021). Analysis of Some Immune Parameters in The Skin Mucus of Four Cultured Fish Species. Is-raeli Journal of aquaculture-Bamidgeh, 73. DOI: 10.46989/ 001c.29916.

Benhamed, S., Guardiola, F.A., Mars, M., & Esteban, M. A. (2014). Pathogen bacteria adhesion to skin mucus of fishes. Veterinary microbiology, 171(1-2), 1–12. DOI: 10.1016/j.vetmic.2014.03.008.

Brandl, S. J., & Bellwood, D. R. (2013). Morphology, sociality, and ecology: can morphology predict pairing behavior in coral reef fishes. Coral Reef, 32(3), 835–846. DOI: 10.1007/s00338-013-1042-0.

Buchmann, K. (1999). Immune mechanisms in fish skin against monogeneans – a model. Folia parasitologica, 46(1), 1–9. URL: https://pubmed.ncbi.nlm.nih.gov/ 10408955.

Bullock, A. M., & Roberts, R. J. (1980). Inhibition of epidermal migration in the skin of rainbow-trout Salmo-gairdneri Richardson in the presence of achromogenic Aeromonas-salmonicida. J. Fish Dis., 3(6), 517–524. DOI: 10.1111/j.1365-2761.1980.tb00437.x.

Cho, J. K., Jin, Y. G., Rha, S. J., Kim, S. J., & Hwang, J. H. (2014). Biochemical characteristics of four marine fish skins in Korea. Food chemistry, 159, 200–207. DOI: 10.1016/j.foodchem.2014.03.012.

Colihueque, N. (2010). Genetics of salmonid skin pigmen-tation: clues and prospects for improving the external appearance of farmed salmonids. Reviews in fish bi-ology and fisheries, 20(1), 71–86. DOI: 10.1007/s11160-009-9121-6.

Fabacher, D. L., & Little, E. E. (1998). Photoprotective substance occurs primarily in outer layers of fish skin. Environmental science and pollution research, 5(1), 4–6. DOI: 10.1007/bf02986366.

Fletcher, T. C., Jones, R., & Reid, L. (1976). Identification of glycoproteins in goblet cells of epidermis and gill of plaice (Pleuronectes-platessa-L), flounder (Platich-thys-flesus (L)) and rainbow-trout (Salmo-gairdneri Richardson). Histochem J., 8, 597–608. DOI: 10.1007/BF01003961.

Grynevych, N., Prisiazhniuk, N., Mychalskii, O., & Kunovskii, Y. (2016). To a question of change pig-mentation o certain representatives of a decorative aquaculture. Scientific Messenger of LNU of Veteri-nary Medicine and Biotechnologies. Series: Veterinary Sciences, 18(1), 32–37. URL: https://nvlvet.com.ua/index.php/ jour-nal/article/view/85.

Horalskyi, L. P., Khomych, V. T., & Kononskyi, O. I. (2015). Osnovy histolohichnoi tekhniky i morfofunktsionalni metody doslidzhen u normi ta pry patolohii. Navchalnyi posibnyk. Za red. L.P.Horalskoho. Vyd. 3-ye, vypravlene i dopovnene. Zhytomyr: “Polissia” (in Ukrainian).

Jones, S. R. (2001). The occurrence and mechanisms of innate immunity against parasites in fish. Dev Comp Immunol, 25, 841–852. DOI: 10.1016/s0145-305x(01)00039-8.

Karlsen, C., Bogevik, A. S., Krasnov, A., & Ytteborg, E. (2021). In vivo and in vitro assessment of Atlantic salmon skin exposed to hydrogen peroxide. Aquaculture, 540, 736660. DOI: 10.1016/j.aquaculture. 2021.736660.

Karlsen, C., Ytteborgc, E., Timmerhaus, G., Høst, V., Handeland, S., Jørgensen, S. M., & Krasnov, A. (2018). Atlantic salmon skin barrier functions gradual-ly enhance after seawater transfer Sci. Rep., 8, 9510. DOI: 10.1038/s41598-018-27818-y.

Klymenko, O. M., Khomych, V. T., Vovk, N. I., & Volo-vyk, H. P. (2003). Morfolohiia ryb: Navchalnyi posibnyk. Rivne: UDUVHP (in Ukrainian).

Komatsu, K., Tsutsui, S., Hino, K., Araki, K., Yoshiura, Y., Yamamoto, A., Nakamura, O., & Watanabe, T. (2009). Expression profiles of cytokines released in in-testinal epithelial cells of the rainbow trout, On-corhynchus mykiss, in response to bacterial infection. Dev Comp Immunol, 33(4), 499–506. DOI: 10.1016/j.dci.2008.09.012.

Kozii, M. S., Sherman, I. M., & Semeniuk, S. K. (2012). Perspektyvy vykorystannia metodyky dioksanovoho znevodnennia u histolohichnykh doslidzhenniakh rozvytku miazovoi tkanyny ryb. Tavriiskyi naukovyi visnyk, 79, 198–204 (in Ukrainian).

Kumari, U., Nigam, A. K., Mittal, S., & Mittal, A. K. (2011). Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus. European review for medical and pharmacological sciences, 15(7), 781–786. URL: https://pubmed.ncbi. nlm.nih.gov/21780547.

Meyer, W., Seegers, U., & Stelzer, R. (2007). Sulphur, thiols, and disulphides in the fish epidermis, with re-marks on keratinization. J. Fish Biol, 71(4), 1135–1144. DOI: 10.1111/j.1095-8649.2007.01585.x.

Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Exp Dermatol, 17(12), 1063–1072. DOI: 10.1111/j.1600-0625.2008.00786.x.

Rakers, S., Gebert, M., Uppalapati, S., Meyer, W., Mader-son, P., Sell, A.F., Kruse, C., & Paus, R. (2010). Fish matters: the relevance of fish skin biology to investi-gative dermatology. Experimental dermatology, 19(4), 313–324. DOI: 10.1111/j.1600-0625.2009.01059.x.

Robinson, N., Karlsen, C., Ytteborg, E., Krasnov, A., Gerwins, J., & Johnsen, H. (2021). Skin and bone de-velopment in Atlantic salmon (Salmo salar) influ-enced by hatchery environment. Aquaculture, 544, 737155. DOI: 10.1016/j.aquaculture.2021.737155.

Shike, H., Shimizu, C., Lauth, X., & Burns, J. C. (2004). Organization and expression analysis of the zebrafish hepcidin gene, an antimicrobial peptide gene con-served among vertebrates. Dev Comp Immunol., 28(7-8), 747–754. DOI: 10.1016/j.dci.2003.11.009.

Stratehiia rozvytku haluzi rybnoho hospodarstva Ukrainy na period do 2030 roku. URL: https://zakon.rada.gov.ua/laws/show/402-2023-%D1%80#Text (in Ukrainian).

Sveen, L., Karlsen, C., & Ytteborg, E. (2020). Mechanical induced wounds in fish – a review on models and healing mechanisms. Rev. Aquac., 12(4), 2446–2465. DOI: 10.1111/raq.12443.

Sveen, L., Timmerhaus, G., Johansen, L.-H., & Ytteborg, E. (2021). Deep neural network analysis - a paradigm shift for histological examination of health and wel-fare of farmed fish. Aquaculture, 532, 736024. DOI: 10.1016/j.aquaculture.2020.736024.

Thambithurai, D., Rácz, A., Lindström, J., Parsons, K. J., & Killen, S. S. (2022). Simulated trapping and trawling exert similar selection on fish morphology. Ecology and Evolution, 12(2), e8596. DOI: 10.1002/ece3.8596.

Urquhart, K., Bowden, T. J., Buckett, B. E., Garcia, J., Fryer, R. J., & Ellis, A. E. (2009). Experimental study of the susceptibility of Atlantic cod, Gadus morhua (L.), to infection with an IPNV strain pathogenic for Atlantic salmon, Salmo salar L. J. Fish Dis, 32(5), 447–456. DOI: 10.1111/j.1365-2761.2009.01036.x.

Vissio, P. G., Darias, M. J., Di Yorio, M. P., Sirkin, D. I. P., & Delgadin, T. H. (2021). Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. General and compara-tive endocrinology, 301, 113662. DOI: 10.1016/j. ygcen.2020.113662.

Whitear, M. (1986). The skin of fishes including cyclostomes. In: J Bereiter-Hahn, A G Matoltsy, K S Ri-cards eds. Biology of the Integument. II, Vertebrates. Berlin: Springer-Verlag, 8–73.

Yan, B., Liu, B., Zhu, C.-D., Li, K.-L., Yue, L.-J., Zhao, J.-L., Gong, X.-L., & Wang, C.-H. (2013). MicroRNA regulation of skin pigmentation in fish. Journal of Cell Science, 126, 3401–3408. DOI: 10.1242/jcs.125831.

Abstract views: 21
PDF Downloads: 30
Published
2024-02-21
How to Cite
Hrynevych, N., Sliusarenko, A., Khomiak, O., Sliusarenko, S., Prysiazhniuk, N., Trofymchuk, A., Zharchynska, V., & Osadcha, Y. (2024). Study of the localization of pigment cells in the skin of scaly carp of various ages (Cyprinus carpio L.). Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 26(100), 143-149. https://doi.org/10.32718/nvlvet-a10022

Most read articles by the same author(s)