Features of digestion in the middle intestine of the honey bee
Abstract
The midgut of the honey bee is considered the only midgut. Processes related to digestion take place in this department. At the same time, the middle intestine takes part in the processes that indicate the immune status. The purpose of the research was to study the effect of protein feed on the morphometric parameters of the epithelium of the midgut of honeybees and the peretrophic membrane. Two groups of families participated in the study. The first group received bee pollen collected from winter rape with a protein content of 25 % as protein feed. The second group consumed dandelion meal with a protein content of 15 %. After reaching the required age, the insects were taken from the nest, and the midgut was dissected. The conducted studies indicate that the length of the enterocytes of the midgut of a honey bee at the age of 10 days ranges from 18.89 to 34.11 μm. Morphometric differences of midgut enterocytes in the experimental groups did not reveal any significant difference. It has been proven that the thickness of the pertrophic membrane in hive bees is greater than that of flying bees by 22.7 % (P < 0.001). This value depends on the area where it is placed. In particular, in the caudal part, the thickness of the pertrophic membrane is more significant on average by 25.0 % compared to the cranial part (P < 0.01). The decrease in the thickness of the midgut of flying bees is related to the nature of nutrition. Older bees consume less pollen and eat more carbohydrate feed. Along with this, it has been proven that the thickness of the pertrophic membrane depends on the composition of the diet. In hive bees that consumed protein-enriched feed, the thickness of the pertrophic membrane in the caudal part of the midgut is 22.1 % greater (P < 0.001).
References
Bolognesi, R., Terra, W., & Ferreira, C. (2008). Peritrophic membrane role in enhancing digestive efficiency: Theoretical and experimental models. Journal of In-sect Physiology, 54(10-11), 1413–1422. DOI: 1016/j.jinsphys.2008.08.002.
Buchon, N., Broderick, N. A., Poidevin, M., Pradervand, S., & Lemaitre, B. (2009). Drosophila intestinal re-sponse to bacterial infection: activation of host de-fense and stem cell proliferation. Cell Host Microbe, 5(2), 200–211. DOI: 10.1016/j.chom.2009.01.003.
Dussaubat, C., Brunet, J.-L., Higes, M., Colbourne, J. K., Lopez, J., Choi, J.-H., Martín-Hernández, R., Botías, C., Cousin, M., McDonnell, C., Bonnet, M., Belzunces, L. P., Moritz, R. F. A., Le Conte, Y., & Alaux, C. (2012). Gut Pathology and Responses to the Micro-sporidium Nosema ceranae in the Honey Bee Apis mellifera. PLoS ONE, 7, 37017. DOI: 10.1371/journal.pone.0037017.
Fiandra, L., Casartelli, M., Cermenati, G., Burlini, N., Giordana, B. (2009). The intestinal barrier in lepidop-teran larvae: Permeability of the peritrophic mem-brane and of the midgut epithelium to two biologically active peptides. Journal of Insect Physiology, (55)1, 10–18. DOI: 10.1016/j.jinsphys.2008.09.005.
Forkpah, C., Dixon, L. R., Fahrbach, S. E., & Rueppell, O. (2014). Xenobiotic effects on intestinal stem cell pro-liferation in adult honey bee (Apis mellifera L.) work-ers. PLoS One, 9, e91180. DOI: 10.1371/journal. pone.0091180.
Garcia-Gonzalez, E., & Genersch, E. (2013). Honey bee larval peritrophic matrix degradation during infection with Paenibacillus larvae, the aetiological agent of American foulbrood of honey bees, is a key step in pathogenesis. Invertebrate–Microbe, 15(11), 2894–2901. DOI: 10.1111/1462-2920.12167.
Hegedus, D., Toprak, U., & Erlandson, M. (2019). Peri-trophic matrix formation. Journal of Insect Physiolo-gy, 117, 103898. DOI: 10.1016/j.jinsphys.2019.103898.
Horalʹsʹkyy, L. P., Khomych, V. T., Kononsʹkyy, O. I. (2008). Osnovy histolohichnoyi tekhniky i mor-fofunktsionalʹni metody doslidzhennya u normi ta pry patolohiyi. Zhytomyr: Polissya (in Ukrainian).
Ibrahim, S., Dias, R., Ferreira, C., Silva, C., & Terra, W. (2023). W. Histochemistry and transcriptomics of mucins and peritrophic membrane (PM) proteins along the midgut of a beetle with incomplete PM and their complementary function. Insect Biochemistry and Molecular Biology, 162, 104027. DOI: 10.1016/j.ibmb.2023. 104027.
Jimenez, D. R., & Gilliam, M. (1996). Peroxisomal en-zymes in the honey bee midgut. Arch. Insect Bio-chem. Physiol., 31(1), 87–103. DOI: 10.1002/(SICI) 1520-6327(1996)31:1<87::AID-ARCH6>3.0.CO;2-U.
Kovalskyi, Y., Kovalska, L., Druzhbiak, A., Zhmur, V., Gavdan, R., & Klym, O. (2023). Improvement of honey bees for intensification of wax production. Sci-entific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 25(98), 83–86. DOI: 10.32718/nvlvet-a9814.
Kovalskyi, Y., Gutyj, B., Fedak, V., Kovalska, L., & Dru-zhbiak, A. (2021). The influence of feed quality on the development and productivity of bee queens. Sci-entific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 23(95), 71–75. DOI: 10.32718/nvlvet-a9510.
Lehane, M., & Billingsley, P. (2012). Biology of the Insect Midgut. Springer Science & Business Media. Springer Dordrecht. DOI: 10.1007/978-94-009-1519-0.
Li, Z., Zhang, S., & Liu, Q. (2008). Vitellogenin Functions as a Multivalent Pattern Recognition Receptor with an Opsonic Activity. PLoS ONE, 3(4), 1940. DOI: 10.1371/journal.pone.0001940.
Martins, G. F., Neves, C. A., Campos, L. A. O., & Serrão, J. E. (2006). The regenerative cells during the metamor-phosis in the midgut of bees. Micron, 37(2), 161–168. DOI: 10.1016/j.micron.2005.07.003.
Martinson, V., Moy, J., & Moran, N. (2012). Establish-ment of Characteristic Gut Bacteria during Develop-ment of the Honeybee Worker. Appl Environ Micro-biol., 78(8), 2830–2840. DOI: 10.1128/AEM.07810-11.
Oliveira, A., Fernandes, K., Gonçalves, W., Zanuncio, J., & Serrão, J. (2019). A peritrophin mediates the peri-trophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. Arthropod Structure & Development, 53, 100885. DOI: 10.1016/j.asd.2019.100885.
Paula, J., Doelo, C., Mesas, C., Kapravelou, G., Cornet, A., Orantes, F., Martinez, R., Linares, F. (2015.) Exploring Honeybee Abdominal Anatomy through Micro-CT and Novel Multi-Staining Approaches. Insects, 13(6), 556. DOI: 10.3390/insects13060556.
Salmela, H., Stark, T., Stucki, D., Fuchs, S., Freitak, D., Dey, A., Kent, C. F., Zayed, A., Dhaygude, K., Hok-kanen, H., & Sundström, L. (2016). Ancient Duplica-tions Have Led to Functional Divergence of Vitello-genin-Like Genes Potentially Involved in Inflamma-tion and Oxidative Stress in Honey Bees. Genome Bi-ol. Evol., 8(3), 495–506. DOI: 10.1093/gbe/evw014.
Taranov, G. F. (2020). Anatomy and physiology of honey bees. Kyiv: Knygonosha (in Ukrainian).
Teixeira, A., Doello, K., Mesas, C., Kapravelou, G., Cor-net, A., Orantes, F., Martinez, R., & Linares, F. (2015.) Peritrophic membrane origin in adult bees (Hymenop-tera): Immunolocalization. Micron., 68, 91–97. DOI: 10.1016/j.micron.2014.09.009.
Tellam, R., Wijffels, G., & Willadsen, P. (1999). Peri-trophic matrix proteins. Insect Biochemistry and Mo-lecular Biology, (29)2, 87–101. DOI: 10.1016/S0965-1748(98)00123-4.
Yue, D., Nordhoff, M., Wieler, L. H., & Genersch, E. (2008). Fluorescence in situ hybridization (FISH) analysis of the interactions between honeybee larvae and Paenibacillus larvae, the causative agent of American foulbrood of honeybees (Apis mellifera). Environ. Microbiol., 10(6), 1612–1620. DOI: 10.1111/j.1462-2920.2008.01579.x.
Abstract views: 39 PDF Downloads: 22




