Non-waste biotechnology of obtaining a symbiotic and a metabolite on the basis of Bifidobacterium longum – Ya 3 and Propionibacterium shermanii – 4


Keywords: propionic acid bacteria, bifidobacteria, supernatant, metabolites, probiotic

Abstract

In order to eliminate dysbiotic violations of microbiota of the human gastrointestinal tract probiotics are used. However, in recent years data has been accumulated on the reduction of the effectiveness of classical probiotics, especially against antibiotic therapy, so a promising group of probiotics of a metabolic type is gaining popularity. Metabiotics contain metabolic products or structural components of probiotic microorganisms. The purpose of experimental work was to develop a technology of non-waste production using a culture fluid of probiotic microorganisms as raw material for the creation of a cell-free probiotic. The objects of the study were cultures of microorganisms of the Museum of the Department of Biochemistry, Microbiology and Nutrition Physiology ONAFT Вifidobacterium longum – Ya 3, Propionibacterium shermanii – 4, the culture fluid of these probiotic strains. Subject of research - structural elements of metabolic activity of probiotic microorganisms, organoleptic, physico-chemical and microbiological indices. After co-cultivating B. longum – I 3 + P. shermanii-PS 4 in a lactose medium with the addition of soy serum at a temperature of (34 ± 1) °C for 24 hours with a titre of at least 1 1010 CFU/cm3, a culture medium supernatant was obtained by centrifugation at 8000 rpm for 20 minutes and further filtration because of bacterial filters in aseptic conditions. The bifidogenic growth stimulator was purified from the microbial biomass residue by vacuum filtration using bacterial filters (Millipore, 0.22 μm). Its determination was carried out by gas-liquid chromatography using the GC-16A «Shimadzu» (Japan) gas chromatograph with the possibility of temperature programming up to 330 °C, flame-ionization detector and software «GC solution». The content of 1,4-dihydroxy-2-naphthoic acid in the supernatant of the consortium Вifidobacterium longum – Ya 3, Propionibacterium shermanii – 4 in the amount of 4.1 mg/liter was determined. The principle of technological schemes of non-waste production of biologically active additives based on the classical and metabolic probiotic developed.

References

Bomba, A., Brandeburova, A., Ricanyova, J., Strojny, L., Chmelarova, A., Szabadosova, V., et al. (2012). The role of probiotics and natural bioactive compounds in modulation of the common molecular pathways in pathogenesis of atherosclerosis and cancer. Biologia. 67, 1–13. doi: 10.2478/s11756-011-0155-6.

Bourdichon, F., Berger, B., Casaregola, S, Farrokh, C., Frisvad, J.C. & Gerds, M.L. (2012). Safety Demonstration of Microbial Food Cultures in Fermented Food Products. Bulletin of the International Dairy Federation, 455–458.

Chang, G., Shi, Y., Le, G., Xu, Z., Sun, J., Li, J., et al. (2009). Effects of Lactobacillus plantarum of genes expression pattern in mice jejunal Peyer’s patches. Cell Immunol. 258, 1–8. doi: 10.1016/j.cellimm.2009.02.005.

Clayton, T.A., Baker, D., Lindon, J.C., Everett, J.R. & Nicholson, J.K. (2009). Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA. 106, 14728–14733. doi: 10.1073/pnas.0904489106.

Di Caro, S., Tao, H., Grillo, A., Elia, C., Gasbarrini, G., & Sepulveda, A.R, (2005). Effects of Lactobacillus GG on gene expression pattern in small bowel mucosa. Dig Liver Dis. 37, 320–9. doi: 10.1016/j.dld.2004.12.008.

FAO/WHO (2002). Join FAO/WHO Working group Guidelines for the Evolutions of Probiotics in Foods. London. Ontario.Canada. 30.

Goldfine, H. (2010). The appearance, disappearance and reappearance of plasmalogens in evolution. Prog Lipid Res. 49, 493–498. doi: 10.1016/j.plipres.2010.07.003.

Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H. & Nicholson, J.K. (2011). Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Micobiol. 19, 349–59. doi: 10.1016/j.tim.2011.05.006.

Ishikawa, K., Handa, N., Sears, L., Raleigh, E.A. & Kobayashi, I. (2011). Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucl Acids Res. 39, 5489–5498. doi: 10.1093/nar/gkr153.

Kaprelyants, L.V., Trufkati, L.V. & Krupytska L.O. (2016). Pozhyvne seredovyshche dlya pidrakhunku kilkosti zhyttyezdatnykh klityn bifidobakteriy u produktakh kharchuvannya ta preparatakh probiotysnoho proznachennya. Naukovyy visnyk Lvivskoho natsionalnoho universytetu veterynarnoyi medytsyny ta biotekhnolohiy imeni S.Z. Gzhytskoho. 18(1), 70–75 (in Ukrainian).

Kaprelyants, L.V. & Krupytska, L.O. (2017). Probiotychni vlastyvosti ta byotekhnolohichnyi potentsial propionovokyslykh bakterii. Mikrobiolohiia i biotekhnolohiia. 1(37). 6–15. doi: 10.18524/2307-4663.2017.1(37).96324 (in Russian).

Kouya, T., Misawa, K., Horiuchi, M., Nakayama, E., Deguchi, H., Tanaka, T., & Taniguchi, M. (2007). Production of extracellular bifidogenic growth stimulator by anaerobic and aerobic cultivations of several propionibacterial strains. Journal of bioscience and bioengineering. 103(5), 464–471. doi: 10.1263/jbb.103.464.

Krupytska, L.O. & Kaprelyants, L.V. (2016). Zhyrnokyslotnyi sklad biolohichno aktyvnykh dobavok z vkliuchenniam propionovokyslykh bakterii. (2016). Visnyk Lvivskoho universytetu. Seriia biolohichna. 73, 442–442 (in Ukrainian).

Krupytska, L.O., Kaprelyants, L.V., Trufkti, L.V., & Shpyrko, T.V. (2017). Research into fatty acid composition of probiotic consortiums with the inclusion of propionic acid bacteria. Vostochno-Evropejskij zhurnal peredovyh tehnologij. 3(6), 15–20. doi: 10.15587/1729-4061.2017.101015.

Krupytska, L.О., Kaprelyants, L.V., & Trufkti, L.V. (2017). Investigation of the antagonistic activity of secondary metabolites of propionic acid bacteria. Kharchova nauka ta tekhnolohiia. 11(2), 16–20. doi: 10.15673/fst.v11i2.508.

Krysenko, O.V., Skliar, T.V., & Vinnikov, A.I. (2010). Mikrobiolohichni aspekty probiotychnykh preparativ. Visnyk Dnipropetrovskoho universytetu. Biolohiia. Ekolohiia. 18(2), 25–33 (in Ukrainian).

Okada, Y., Tsuzuki, Y., Miyazaki, J., Matsuzaki, K., Hokari, R., Komoto, S. et al. (2006). Propionibacterium freudenreichii component 1,4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut. 55, 681–688. doi: 10.1136/gut.2005.070490.

Semenov, A.V. (2011). Harakteristika otnoshenij mezhdu probioticheskimi i avtohtonnymi mikroorganizmami i algoritm individual'nogo podbora probiotikov. (2011). Kazanskij medicinskij zhurnal. 92(6), 792–795 (in Russian).

Yuan, J., Wang, B., Sun, Z., Bo, X., Yuan, X., He, X., et al. (2008). Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J Proteome Res. 7, 375–385. doi: 10.1021/pr0704940.

Abstract views: 81
PDF Downloads: 209
Published
2018-03-02
How to Cite
Krupytska, L., Kaprelyants, L., Kylymenchuk, O., & Velichko, T. (2018). Non-waste biotechnology of obtaining a symbiotic and a metabolite on the basis of Bifidobacterium longum – Ya 3 and Propionibacterium shermanii – 4. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 20(85), 148-154. https://doi.org/10.15421/nvlvet8527