Effect of the modified silica on the conductivity and sensory properties of polyaniline nanocomposites


Keywords: polyaniline, silica, morphology, nanocomposite, resistivity, moisture absorption, sensory properties.

Abstract

The introduction of nanosized fillers into composites with conductive polymers allows them to control physical and chemical characteristics of these polymers. Silica nanoparticles due to its remarkable properties, which include large ratio of surface area to volume, excellent chemical stability, low cost of synthesis, and low toxicity, especially convenient surface modification, have attracted much attention of researchers. Such materials may be as excellent platforms for development of smart sensing systems for numerous applications in analytical chemistry and bioanalysis, in medical diagnostics and therapy, environmental and food analysis, security. It is known that the presence of nanosized silica in the structure of hybrid polymeric composites can not only radically change the structure, but also lead to improved mechanical characteristics, sorption capacity, increase or decrease in specific conductivity. In this work the method of polymerization filling in situ was used for preparation of the hybrid composites of polyaniline with nanoparticles of silica modified by titanium (TAC-7) and phosphorus (F-2.1) compounds, studied their morphology, electrical and moisture absorption properties. Influence of the content of inorganic component in composites on their specific conductivity, activation parameters of conductivity and their changes under the action of moisture were studied. It is shown that the filler content of 1–4% increases the electrical conductivity of composites and the incorporation of modified nanoparticles F-2.1 helps stabilize the resistivity of nanocomposites at high humidity. The resistivity change less than 2% was observed throughout the whole range of possible moisture, therefore the obtained modified material can be recommended for using in the resistive sensors operating in the condition of high humidity. Moreover, F-2.1 enhances sensitivity of polymer matrix to hydrogen chloride vapors. So, the possibility of using chemically deposited thin films of polyaniline/modified silica nanocomposite for the optical gas sensors production for various purposes, including monitoring the state of environments in real conditions of atmosphere, is shown.

References

Aksimentyeva, O.I., Grytsiv, M.Y., & Konopelnyk, O.I. (2002). Temperature dependence of resistance and thermal stability of doped polyaniline. Functional Materials, 9(2), 251–254.

Aksimentyeva, О.І., Bogatyrev, V.M., Martynyuk, G.V., Olenych, I.B., Horbenko, Yu., & Kit, L. (2015). Synthesis and electrical properties of composites of polyaniline with silica. Scientific notes of Ternopil National Pedagogical University named after Vladimir Gnatyuk. Series: Chemistry, 22, 11–14 (in Ukrainian).

Awuzie, C.I. (2017). Conducting Polymers. Materials today: Proceedings, 4(4-E), 5721–5726. doi: 10.1016/j.matpr.2017.06.036.

Bapat, G., Labade, C., Chaudhari, A., & Zinjarde, S. (2016). Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Advances in Colloid and Interface Science, 237, 114. doi: 10.1016/j.cis.2016.06.001.

Bogatyrev, V.M., & Chuiko, A.A. (1984). Interaction of phosphorus trichloride with dehydrated aerosil on its surface. Ukrainian Chemical Journal, 50(8), 831–835 (in Russian).

Chethan, B., Raj Prakash, H.G., Ravikiran, Y.T., Vijayakumari, S.C., Ramana, CH. V.V., Thomas, S., & Daewon, K. (2019). Enhancing humidity sensing performance of polyaniline/water soluble graphene oxide composite. Talanta, 196, 337–344. doi: 10.1016/j.talanta.2018.12.072.

Cichosz, S., Masek, A., & Zaborski, M. (2018). Polymer-based sensors: A review. Polymer Testing, 67, 342–348. doi: 10.1016/j.polymertesting.2018.03.024.

Ćirić-Marjanović, G. (2013). Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 177, 1–47. doi: 10.1016/j.synthmet.2013.06.004.

Eftekhari, A., Li, L., & Yang, Y. (2017). Polyaniline supercapacitors. Journal of Power Sources, 347, 86–107. doi: 10.1016/j.jpowsour.2017.02.054.

Filonenko, O.V., & Lobanov, V.V. (2010). Ctruktura ta vlastyvosti nanoklasteriv kremnezemu (Ohliad) [Structure and properties of silica nanoclusters (Review)]. Physics and chemistry of solid state, 11(1), 138149 (in Ukrainian).

Fratoddi, I., Venditti, I., Cametti, C., & Russo, M.V. (2015). Chemiresistive polyaniline-based gas sensors: A mini review. Sensors and Actuators B: Chemical, 220, 534–548. doi: 10.1016/j.snb.2015.05.107.

Goncharuk, О.В., Malysheva, M.L., Zarko, V.І., & Grycenko, V.F. (2010). Structuring in dispersions of pyrogenic silica in the presence of non-indifferent electrolytes. Nanoparticles, Nanoclusters, Zero-dimension Subjects, 1, 16–23 (in Ukrainian).

Konopelnyk, O.I., Aksimentyeva, O.I., & Horbenko, Y.Y. (2017). Temperature dependence of conductivity in conjugated polymers doped by carbon nanotubes. Journal of Nano- and Electronic Physics, 9(5), 05011. doi: 10.21272/jnep.9(5).05011.

Li, X., Li, X., Li, Z., Wang, J., & Zhang, J. (2017). WS2 nanoflakes based selective ammonia sensors at room temperature. Sens. Actuators B Chem., 240, 273–277. doi: 10.1016/j.snb.2016.08.163.

Li, X., Wang G., & Lib, X. (2005). Surface modification of nano-SiO2 particles using polyaniline.

Surf. Coat. Technol., 197, 56–60. doi: 10.1016/j.surfcoat.2004.11.021.

Liao, G., Li, Q., & Xu, Z. (2019). The chemical modification of polyaniline with enhanced properties: A review. Progress in Organic Coatings, 126, 35–43. doi: 10.1016/j.porgcoat.2018.10.018.

Liberman, A., Mendez, N., Trogler, W.C., & Kummel, A.C. (2014). Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surf. Sci. Rep., 69, 132–158. doi: 10.1016/j.surfrep.2014.07.001.

Liu, F., Wang, H., Zhang, Y., Wang, X., & Zhang, S. (2019). Synthesis of low band-gap 2D conjugated polymers and their application for organic field effect transistors and solar cells. Organic Electronics, 64, 27–36. doi: 10.1016/j.orgel.2018.09.03.

Liu, P. (2008). Preparation and characterization of conducting polyaniline/silica nanosheet composites. Cur. Op. Sol. St. Mater. Sci, 12, 9–13. doi: 10.3329/bjsir.v47i3.13055.

Lu, N., Li, L., Geng, D., & Liu, M. (2018). A review for polaron dependent charge transport in organic semiconductor. Organic Electronics, 61, 223–234. doi: 10.1016/j.orgel.2018.05.053.

Lurie, Y.Y. (1971). Handbook of Analytical Chemistry. 4th ed. Moscow: Chemistry (in Russian).

Ma, Q., Li, Y., & Su, X. (2015). Silica nanobead-based sensors for analytical and bioanalytical applications. Trends in Analytical Chemistry, 74, 130145. doi: 10.1016/j.trac.2015.06.006.

Misra, S.C.K., Mathur, P., Yadav, M., Tiwari, M.K., Garg, S.C., & Tripathi, P. (2004). Preparation and characterization of vacuum deposited semiconducting nanocrystalline polymeric thin film sensors for detection of HCl. Polymer, 45, 8623–8628. doi: 10.1016/j.polymer.2004.10.010.

Murugadoss, S., Lison, D., Godderis, L., Van Den Brule, S., Mast, J., Brassinne, F., Sebaihi, N., & Hoet, P.H. (2017). Toxicology of silica nanoparticles: an update. Arch. Toxicol., 91, 2967–3010. doi: 10.1007/s00204-017-1993-y.

Naveen, M.H., Gurudatt, N.G., & Shim, Y.-B. (2017). Applications of conducting polymer composites to electrochemical sensors: A review. Applied materials today, 9, 419–433. doi: 10.1016/j.apmt.2017.09.001.

Pacher, P., Lex, A., Eder, S., Trimmel, G., Slugovc, C., List, E.J.W., & Zojer, E. (2010). A novel concept for humidity compensated sub-ppm ammonia detection. Sensors and Actuators B, 145(1), 181–184. doi: 10.1016/j.snb.2009.11.049.

Pavase, T.R., Lin, H., Shaikh, Q.-U.-U., Hussain, S., Li, Z., Ahmed, I., Lv, L., Sun, L., Shah, S.B.H., & Kalhoro, M.T. (2018). Recent advances of conjugated polymer (CP) nanocomposite-based chemical sensors and their applications in food spoilage detection: A comprehensive review. Sensors and Actuators B: Chemical, 273, 1113–1138. doi: 10.1016/j.snb.2018.06.118.

Seo, C.U., Yoon, Y., Kim, D.H., Choi, S.Y., Park, W.K., Yoo, J.S., Baek, B., Kwon, S.B., Yang, C.-M., Song, Y.H., Yoon, D.H., Yang, W.S., & Kim, S. (2018). Fabrication of polyaniline–carbon nano composite for application in sensitive flexible acid sensor. Journal of Industrial and Engineering Chemistry, 64, 97–101. doi: 10.1016/j.jiec.2018.03.031.

Starokadomskyi, D. L., Holovan, S. V., Teleheev, Y. H., Tkachenko, A.A., & Myschanchuk, B.H. (2011) Dyspersnost kremnezema y modyfytsyrovanye eho poverkhnosty kak faktory usylenyia epoksypolymernoho kompozyta [Dispersion of silica and modification of its surface as factors of strengthening of epoxypolymer composite]. Polymer journ., 33(2), 140–148 (in Russian).

Tanguy, N.R., Thompson, M., & Yan, N. (2018). A review on advances in application of polyaniline for ammonia detection. Sensors and Actuators B: Chemical, 257, 1044–1064. doi: 10.1016/j.snb.2017.11.008.

Tsizh, B.R., Aksimentyeva, O.I., Olhova, M.R., & Horbenko, Yu.Yu. (2016). Sensory properties of polyaniline films, obtained on the optically transparent carriers. Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj, 2(68), 121–125 (in Ukrainian).

Tsizh, B., & Aksimentyeva, O. (2016). Organic high-sensitive elements of gas sensors based on conducting polymer films. Molecular Crystals and Liquid Crystals, 639(1), 33–38. doi: 10.1080/15421406.2016.1254490.

Wang, H., Lin, J., & Shen, Z.X. (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 1(3), 225–255. doi: 10.1016/j.jsamd.2016.08.001.

Wang, J., Li, Zh., Zhang, S., Yan, Sh., Cao, B., Wang, Zh., & Fu, Y. (2018). Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sensors and Actuators B, 255, 862–870. doi: 10.1016/j.snb.2017.08.149.

Wang, L., Zhao, W., & Tan, W. (2008). Bioconjugated silica nanoparticles: development and applications. Nano. Res., 1, 99–115. doi: 10.1007/s12274-008-8018-3.

Zarko, V.I., Goethe, V., Kozub, G.M., & Chuiko, A.A. (1983). Structural and electrical properties of titanium-containing silica. News of the USSR Academy of Sciences. Inorganic materials, 19(2), 239–241 (in Russian).

Abstract views: 0
PDF Downloads: 0
Published
2019-04-23
How to Cite
Horbenko, Y., Tsizh, B., Aksimentyeva, O., Olenych, I., Bogatyrev, V., & Dzeryn, M. (2019). Effect of the modified silica on the conductivity and sensory properties of polyaniline nanocomposites. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 21(91), 29-37. https://doi.org/10.32718/nvlvet-f9106