Functional wheat bread with calcium chelate complexes

Keywords: wheat bread, functional ingredient, calcium, chelate complexes, bioligands, peptidoglycans, probiotic bacteria, dietary fiber.


Bakery products are promising objects for enrichment with functional food ingredients, as they are mass consumption products. The problem of hypo-elementosis in people makes it advisable to develop functional food ingredients based on easily digestible and safe forms of essential biometals, including calcium. In this study, it has been shown that wheat bread can be enriched with calcium chelate complexes. This functional food ingredient was obtained by complexation of Ca2+ with bioligands of probiotic origin, followed by immobilizing the complexes on dietary fiber of wheat bran. Mixed-ligand systems were obtained by combining a metabolite (lactic acid) and degradation products of peptidoglycans of Lactobacillus delbrueckii subsp. Bulgaricus B-3964. The peptidoglycans of the biomass autolysate were degraded by enzymatic hydrolysis with papain. This resulted in obtaining a mixture that contained amino acids, low molecular weight peptides, and muropeptides, in the concentrations 12.44 mg/cm3, 6.85 mg/cm3, and 2.76 mg/cm3, respectively. The nephelometric method has shown that this mixed-ligand system binds calcium ions in an amount of 18 mg/cm3. The soluble complexes obtained were immobilized on the dietary fiber to solve the problem of concentrating, drying, and dosing these ingredients. It has been proved that immobilization only occurs due to physical sorption that completely releases the active component from the dietary fiber matrix under conditions that simulate the gastrointestinal environment. The functional ingredient developed was added to the classic wheat bread recipe, where it replaced 1 %, 3 %, and 5 % of the flour. Bread was made without pre-fermentation to reduce the total production time and to prevent the ingredient’s biologically active components from being assimilated by yeast during long fermentation. The study of the experimental and control samples of wheat bread has shown that the introduction of chelate complexes of calcium immobilized on dietary fiber causes no deterioration of the physico-chemical parameters of the finished bread: they are all within the limits approved by the regulatory documentation. The sensory properties of the samples with 1 % and 3 % of flour replaced are close to those of the control sample. So 3 % of the ingredient is the recommended amount to be added, as it provides 98 % of the daily requirement of calcium as a functional ingredient and covers about 25 % of the daily allowance of dietary fiber.


Abdel-Mottaleb, M. S. A., & Ismail, E. H. (2019). Transi-tion Metal Complexes of Mixed Bioligands: Synthesis, Characterization, DFT Modeling, and Applications. Journal of Chemistry, 2019, Article ID 3241061, 18. doi: 10.1155/2019/3241061.

Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Ma-ta-Haro, V., González-Córdova, A. F., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. doi: 10.1016/j.tifs.2018.03.009.

Arsenieva, L. Iu., Herasymenko, L. O., Derevianko, L. P., Antoniuk, M. M., & Khivrych, B. I. (2005). inventor; Natsionalnyi universytet kharchovykh tekhnolohii, assignee. Pshenychnyi khlib funktsionalnoho pryznachennia. Ukrainian ptent 4512. 17.01.2005. (in Ukrainian).

Cherevko, O. I., & Peresichniy, M. I., (2017). Innovatsiini tekhnolohii kharchovoi produktsii funktsionalnoho pryznachennia: monohrafiia. Chastyna 1. 4-te vyd., pererobl. ta dopov. Kh.: Kharkivskyi derzh. univ. kharchuv. i torhivli (in Ukrainian).

Cherno, N., & Kapustyan, A. (2016). Immunological properties of the bacterial origin compounds. Food science and technology, 10(3), 19–28. doi: 10.15673/fst.v10i3.175.

Drobot, V. I. (2006). Tekhnolohiia khlibopekarskoi vy-robnytstva. K.: Lohos (in Ukrainian).

Dubinina, A., Lenert, S., & Popova, T. (2016). Vy-korystannia pshona u vyrobnytstvi khliba ozdo-rovchoho pryznachennia. Food Science and Technol-ogy, 10(4), 18–24. doi: 10.15673/fst.v10i4.249 (in Ukrainian).

Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763–2813. doi: 10.3168/jds.2017-13112.

Ibrahim, U. K., Salleh, R. M., & Maqsood-ul-Haque, S. N. S. (2015). Bread towards Functional Food: An Over-view. International Journal of Food Engineering, 1(1), 39–43. doi: 10.18178/ijfe.1.1.39-43.

Irazoki, O., Hernandez, S.B., & Cava, F. (2019). Pepti-doglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front. Microbiol., 10, 500. doi: 10.3389/fmicb.2019.00500.

Kapustian, A. I., & Cherno, N. K. (2019). Vyznachennia kompleksoutvoriuvalnoi zdatnosti zmishano-lihandnykh orhanichnykh system po vidnoshenniu do yoniv metaliv. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S. Z. Hzhytskoho, 21(91), 130–135. doi: 10.32718/nvlvet-f9122 (in Ukrainian).

Kapustian, A. I., Cherno, N. K., & Pukas, A. S. (2019). Rozroblennia metodu vyznachennia funktsionalnykh kharchovykh inhrediientiv muropeptydnoho pokhodzhennia u bakterialnykh dezintehratakh. Naukovi pratsi NUKhT, 25(62), 157–164. doi: 10.24263/2225-2924-2019-25-6-21 (in Ukraini-an).

Kapustian, A., Cherno, N., & Nikulina, О. (2018). Obtain-ing and characteristics of calcium organic forms on the basis of metabolites and processing products of probiotic bacteria. Food Science and Technology, 12(2), 4–12. doi: 10.15673/fst.v12i2.944.

Karkischenko, N. N. (2013). Rol mikroelementov v sportivnom pitanii i bezopasnost metallohelatov. Biomeditsina, 2, 12–41 (in Russian).

Marth, J. D. (2008). A unified vision of the building blocks of life. Nat Cell Biol., 10(9), 1015–1016. doi: 10.1038/ncb0908-1015.

Morris, D. L. (1948). Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science, 107(2775), 254–255. doi: 10.1126/science. 107.2775.254.

Nechaev, A. P., Traubenberg, S. E., & Kochetkova, A. A. (2001). Pischevaya himiya. S.-Pb.: GIORD (in Russian).

Oliinyk, S. H., Lysiuk, H. M., Kravchenko, O. I., & Samokhvalova, O. V. (2014). Tekhnolohii khlibobulochnykh vyrobiv iz produktamy pererobky zarodkiv pshenytsi. Kh.: KhDUKhT (in Ukrainian).

Pavlenko, A. A. (2014). Zbahachennia khlibobulochnykh vyrobiv spetsialnoho pryznachennia vitaminom D. Tekhnolohycheskyi audyt y rezervi proyzvodstva, 6/1(20), 36–39. doi: 10.15587/2312-8372.2014.31511 (in Ukrainian).

Semak, I. V., Zyiryanova, T. N., & Gubich, O. I. (2007). Biohimiya belkov: praktikum dlya studentov biol. Fak. spets. 1-31 01 01 “Biologiya”. Minsk: BGU (in Russian).

Simakhina, H. O., & Naumenko, N. V. (2016). Kharchuvannia yak osnovnyi chynnyk zberezhennia stanu zdorovia naselennia. Problemy starenyia i dolholetyia, 25(2), 204–214 (in Ukrainian).

Sirbu, A., & Arghir, C. (2017). Functional bread: Effect of inulin-type products addition on dough rheology and bread quality. Journal of cereal science, 75, 220–227. doi: 10.1016/j.jcs.2017.03.029.

Skalny, A. V., & Skalnaya, M. G. (2011). Metal ions as bioelements. Metal ions in biology and medicine, 11, 14.

Starr, J. N., & Westhoff, G. (2014). Lactic Acid. Ullmann's Encyclopedia of Industrial Chemistry, Wiley. doi: 10.1002/14356007.a15_097.pub3.

Tarazona, L. K. J., Berbesi, C. M. A., Vera1, Y. C., Contre-ras-Velasquez, J. C., Bermudez, V., & Rojas, E. (2018). A functional bread designed with rye flour and stevia sweetener: A sensory and microbiological anal-ysis. Archivos Venezolanos de Farmacología y Terapéutica, 37(2), 129–134. cbe8ba134d939c7840ab8dd0ca58fbfd/1?pq-origsite=gscholar&cbl=1216408.

Abstract views: 92
PDF Downloads: 115
How to Cite
Kapustian, A., Cherno, N., & Lebedenko, T. (2020). Functional wheat bread with calcium chelate complexes. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 22(93), 31-38.