Obtaining and characterization of modified mannan from the coffee sludge

Keywords: mannan, a product of processing water-soluble coffee, water-soluble mannan.


Mannans are polysaccharides of natural origin. Their main chain consists of residues of D-mannose. They have an immunomodulatory effect, able to induce macrophage activation, inhibit tumor growth and virus development, normalize blood cholesterol, etc. Manooligosaccharides are effective prebiotics The main way to obtain mannan is to extract their alkaline solutions. This makes it impossible to use this polysaccharide in food technologe. This study proposes a biotechnological method of producing water-soluble mannan from coffee sludge. As a source of mannan used a by-product of obtaining instant coffee at the Odessa Combine Food Concentrates which is formed in the processing of coffee beans Arabica. The chemical composition of this coffee sludge was investigated. It is dominated by water-insoluble carbohydrates which are represented by hemicellulose polysaccharides and cellulose. Analysis of the monosaccharide composition of hemicelluloses showed that the hydrolyzate contains mannose, glucose and galactose residues in a ratio of 6: 0,5: 3., which may indicate the presence of galactomannan in their composition. The developed method involves the treatment of the coffee sludge with enzyme preparation with beta-mannanase activity. The process was carried out in aqueous medium at temperature 50 °C, varying the hydromodule in the range of 30… 50, the ratio of enzyme: substrate (1:25, 1:50 and 1:100) for 24…72 hours. This study presents the characteristics of the monomer composition and molecular weight distribution of polysaccharide samples obtained in this way. Only mannose was found in the hydrolyzate of water-soluble mannan. The rational conditions of enzymatic processing of raw materials are determined. The modified mannan is soluble in water. It contains the highest number of target fragments with a molecular weight of about 20 kDa which are considered to be the most physiologically active. Subsequently the modified mannan can be used in nanotechnology functional food ingredients and dietary supplements.


Aderem, A., & Underhill, D. M. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol., 17, 593–623. doi: 10.1146/annurev.immunol.17.1.593.

Chokboribal, J., Tachaboonyakiat, W., Sangvanich, P., Ruangpornvisuti, V., Jettanacheawchankit, S., & Thunyakitpisal, P. (2015). Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohydr. Polym., 133, 556–566. doi: 10.1016/j.carbpol.2015.07.039.

Ferreira, S. S., Passos, C. P., Madureira, P., Vilanova, M., & Coimbra, M. A. (2015). Structure-function relation-ships of immunostimulatory polysaccharides: A re-view. Carbohydr. Polym., 132, 378–396. doi: 10.1016/j.carbpol.2015.05.079.

Gatenholm, P., & Tenkanen, M. (2004). Hemicelluloses: Science and Technology. American Chemical Society, 2004. 388. doi: 10.1021/bk-2004-0864.

Guo, S., Mao, W., Han, Y., Zhang, X., Yang, C., Chen, Y., Xu, J., Li, H., Qi, X., & Xu, J. (2010). Structural charac-teristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Ed-wardsiella tarda. Bioresour Technol., 101(12), 4729–4732. doi: 10.1016/j.biortech.2010.01.125.

Joseph, M. M., Aravind, S. R., George, S. K., Varghese, S., & Sreelekha, T. T. (2013). A galactomannan polysac-charide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohydr Polym., 98(2), 1466–1475. doi: 10.1016/j.carbpol.2013.07.023.

Heinrichs, A. J., Jones, C. M., & Heinrichs, B. S. (2003). Effects of mannan oligosaccharide or antibiotics in neonatal diets on health and growth of dairy calves. J. Dairy Sci., 86, 4064–4069. doi: 10.3168/jds.S0022-0302(03)74018-1.

Korolenko, A., Bgatova N. P., & Vetvicka, V. (2019). Glucan and Mannan – Two Peas in a Pod. Int. J. Mol. Sci., 20(13), 3189. doi: 10.3390/ijms20133189.

Kumar, S., & Kumar, R. (2019). Role of acemannan O-acetyl group in murine radioprotection. Carbohydr. Polym., 207, 460–470. doi: 10.1016/j.carbpol.2018.12.003.

Liu, C., Cui, Y., Pi, F., Cheng, Y., Guo, Y., & Qian, H. (2019). Extraction, Purification, Structural Character-istics, Biological Activities and Pharmacological Ap-plications of Acemannan, a Polysaccharide from Aloe vera: A Review. Molecules, 24(8), 1554. doi: 10.3390/molecules24081554.

Moreira, L. R., & Filho, E. X. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol., 79, 165–178. doi: 10.1007/s00253-008-1423-4.

Pietersz, G. A. (2017). Ascend Biopharmaceuticals Pty Ltd. Use of high molecular weight mannan for induc-ing and/or enhancing an immune response US Patent 9597392. 2017 21 march

Polari, L., Ojansivu, P., Makela, S., Eckerman, C., Holmbom, B., & Salminen, S. (2002). Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym, 48, 29–39.

Polari, L., Ojansivu, P., Makela, S., Eckerman, C., Holmbom, B., & Salminen, S. (2012). Galactogluco-mannan extracted from spruce (Picea abies) as a car-bohydrate source for probiotic bacteria. J Agric Food Chem., 60(44), 11037–11043. doi: 10.1021/jf303741h.

Redgwell, R., & Fischer, M. (2006). Coffee carbohydrates. Braz. J. Plant Physiol., 18(1), 165–174 doi: 10.1590/s1677-04202006000100012.

Salah, F., El Ghoul, Y., Mandhi, A., Majdoub, H., Jarroux, N., & Sakli, F. (2017). Effect of the deacetylation de-gree onthe antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind. Crops Prod., 103, 13–18. doi: 10.1016/j.indcrop.2017.03.033.

Sezer, A. D. (2014). Application of Nanotechnology in Drug Delivery. Marmara University, Turkey. doi: 10.5772/57028.

Singab, A. N., El-Hefnawy, H. M., Esmat, A., Gad, H. A., & Nazeam, J. A. (2015). A Systemic Review on Aloe arborescens Pharmacological Profile: Biological Activ-ities and Pilot Clinical Trials. Phytother. Res., 29(12), 1858–1867. doi: 10.1002/ptr.5483.

Singh, S., Singh, G., & Arya, S. K. (2018). Mannans: An overview of properties and application in food prod-ucts. Int. J. Biol. Macromol., 119, 79–95. doi: 10.1016/j.ijbiomac.2018.07.130.

Simões, J., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2010). Structural features of partially acetylat-ed coffee galactomannans presenting immunostimu-latory activity Carbohydr Polym, 79(2), 397–402. doi: 10.1016/j.carbpol.2009.08.020.

Sood, N., Baker, W. L., & Coleman, C. I. (2008). Effect of glucomannan on plasma lipid and glucose concentra-tions, body weight, and blood pressure: systematic re-view and meta-analysis. Am J Clin Nutr., 88(4), 1167–1175. doi: 10.1093/ajcn/88.4.1167.

Sohail, M. U., Hume, M. E., Byrd, J. A., Nisbet, D. J., Ijaz, A., Sohail, A. et al. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult Sci., 9(1), 2235–2240 doi: 10.3382/ps.2012-02182.

Tizard, I. R.,Carpenter, R. H., McAnalley, B. H., & Kemp, M. C. (1989). The biological activities of mannans and related complex carbohydrates. Mol Biother., 1(6), 290–296.

Tzianabos, O. (2000). Polysaccharide Immunomodula-tors as Therapeutic Agents: Structural Aspects and Biologic Function. Clinical Microbiol Reviews, 13(4), 523–533. doi: 10.1128/CMR.13.4.523.

Vasta, G., Quesenberry, R., Ahmed, M., & O'Leary, H. (1999). C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev. Comp. Immu-nol., 23, 401–420. doi: 10.1016/s0145-305x(99)00020-8.

Abstract views: 102
PDF Downloads: 95
How to Cite
Cherno, N., Naumenko, K., & Gural, L. (2020). Obtaining and characterization of modified mannan from the coffee sludge. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 22(93), 55-60. https://doi.org/10.32718/nvlvet-f9310