The technology of soft Camembert cheese with the usage of different bacterial preparations

Keywords: Camembert cheese, lactic acid bacteria, soft cheese, technology, coagulation duration, syneretic properties, organoleptic properties


The aim of the work was to develop a technology of soft Camembert cheese from pasteurized cow's milk using various bacterial preparations and to investigate its basic physicochemical and organoleptic properties. Two experimental samples of cheese were made: sample 1 – culture of direct application of mesothermophilic type RSF-742 + culture of white mold (Penicillium candidum + Geotrichum candidum) + rennet enzyme + calcium chloride; sample 2 – culture of direct application of mesophilic type CHN-19 + culture of white mold (Penicillium candidum + Geotrichum candidum) + rennet enzyme + calcium chloride. The finished product analyzed by the organoleptic and physicochemical parameters. Syneretic properties of rennet clots were studied after the process of fermentation and coagulation at a temperature of 32 ºC. The sample with the use of CNH-19 was characterized by the best consistency and pronounced mushroom and creamy aroma. Sample № 1, made with the bacterial preparation RSF-742, was characterized by a less pronounced aroma and structure, typical of Camembert cheese. It was found that the sample №1 (RSF-742) was characterized by higher syneretic properties. According to syneretic properties, lower moisture content characterized sample 1 (62 %) versus sample 2 (64 %). The volume of serum released in 1 hour was 65 % for sample 1 and 62 % for sample 2. The highest values for the fat content was sample 1 – 43 %, and sample 2 – 42 %. The content of salt did not differ, in sample № 1 – 1.8 % and in sample № 2 – 1.75 %. There were changes in the active acidity of the finished product when using different bacterial preparation. Lower pH values in sample 1 – 6.2, and slightly higher in sample 2 – 6.5 were observed. The highest number of points according to the results of the score was given to sample № 2 – 86 points, sample № 1 – 77 points out of possible 100.


Ahiko, K., Iwasawa, S., Ulda, M., & Nigata, N. (1981). Studies on acid carboxypeptidase from Penicilium ca-seicolum: II. Hydrolysis of bitter peptides by acid car-boxypeptidases and large scale preparation of the en-zyme. Report of Research Laboratory, Snow Brand Milk Products Co, 77, 135–140.

Ash, R. (2010). Mes fromages maison. Paris: Les petits guides rustica.

Bansal, N., Fox, P. F., & McSweeney, P. L. H. (2009). Comparison of the level of residual coagulant activity in different cheese varieties. Journal of Dairy Re-search, 76, 290–293. doi: 10.1017/S0022029909004075.

Baroiller, C, & Schmidt, J. L. (1990). Etude de l'origine des levures isolées de fromages de Camembert. Le Lait, INRA Editions, 70, 67–84. URL:

Chernova, O. (2019). dy`plomovany`j sy`rny`j ekspert [Internet]. [updated 2019 February 16]. URL: (in Ukrainian).

Dréan, G. Le., Mounier, J., Vasseur, V., Arzur, D., Habrylo, O., & Barbier, G. (2010). Quantification of Penicillium camemberti and P. roqueforti mycelium by real-time PCR to assess their growth dynamics during ripening cheese. International Journal of Food Microbiology, 136(1–2), 100–107. doi: 10.1016/ j.ijfoodmicro.2009.12.013.

Fox, P. F., & McSweeney, P. L. H. (1996). Proteolysis in cheese during ripening. Food Reviews International, 12(4), 457–509. doi: 10.1080/87559129609541091.

Guizani, N., Kasapis, S., Al-Attabi, Z. H., & Al-Ruzeiki, M. H. (2002). Microbiological, physicochemical and bio-chemical changes during ripening of Camembert cheese made of pasteurized cow’s milk. International Journal of Food Properties, 5(3), 483–494. doi: 10.1081/JFP-120015486.

Hassouna, M., Nafti, A., & Ghrir, R. (1996). L’affinage d’un Fromage a` Paˆte Molle et a` Crouˆte Fleurie de Type Camembert au Lait Cru de Brebis: Aspects Microbiologiques et Physico-chimiques. Sciences des Aliments, 16, 187–203.

Kalmy`kova, G. F. (2015). Rozroblennya texnologiyi sy`ru termoky`slotnogo, zbagachenogo molochnoky`sloyu mikrofloroyu. PhD. Kyyiv (in Ukrainian).

Kuznyeczov, V. V. (2003). Dovidny`k texnologa molochnogo vy`robny`cztva. Texnologiyi ta receptury` Za red. G.G. Shilera. SPb.: GIORD (in Ukrainian).

Le Graet, Y., Lepienne, A., Brule´, G., & Ducruet, P. (1983). Migration du Calcium et des Phosphates Inorganiques Dans les Fromages a Paˆte Molle de Type Camembert au Cours de l’Affinage. Le Lait, INRA Editions, 63, 317–332. doi: 10.1051/lait:1983629-63019.

Leclercq‐Perlat, M. N., Oumer, A., Bergere, J. L., Spinnler, H. E., & Corrieu, G (1999). Growth of Debaryomyces hansenii on a bacterial surface‐ripened soft cheese. Journal of Dairy Research, 66, 271–281. doi: 10.1017/S0022029999003362.

Lenoir, J. (1963). Microbienne du Camembert et Son Evolution au Cours de la Maturation. Le Lait, INRA Editions, 43, 262–270. URL:

Lenoir, J. (1963). Note Sur la De´gradation des Protides au Cours de la Maturation du Camembert. Le Lait, INRA Editions, 43 154–165.

Mane, A., & McSweeney, P. L. H. (2019). Proteolysis in Irish farmhouse Camembert cheese during ripening. Journal of Food Biochemistry, 44(1), e13101. doi: 10.1111/jfbc.13101.

Matsuoka, H., Fuka, Y., Kaminogawa, S., & Yamauchi, K. (1991). Purification and debittering effect of ami-nopeptidase II from Penicillium caseicolum. Journal of Agricultural Food Chemistry, 39, 1392–1395. doi: 10.1021/jf00008a007.

Morel, G., Sterck, L., Swennen, D., Marcet‐Houben, M., Onesime, D., Levasseur, A., & Casaregola, S. (2015). Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts. Science Reports, 5, 11571. doi: 10.1038/srep11571.

Richard, J. (1984). Evolution de la Flore Microbienne a´ la Surface des Camemberts Fabrique´s Avec du Lait Cru, Le Lait. INRA Editions, 64, 496–520. URL:

Richard, J., & Zadi, H. (1983). Inventaire de la Flore Bacte´rienne Dominante des Camemberts Fabrique´s Avec du Lait Cru. Le Lait, INRA Editions, 63, 25–42. doi: 10.1051/lait:1983623-6243.

Schlesser, J. E., Schmidt, S. J., Speckman, R. (1992). Characterization of Chemical and Physical Changes in Camembert Cheese During Ripening. Journal of Dairy Science, 75, 1753–1760. doi: 10.3168/jds.S0022-0302(92)77934-X.

Schmidt, J. L., & Lenoir, J. (1978). Contribution a` l’Etude de la Flore Levure du Fromage de Camembert. Son Evolution au Cours de la Maturation, 58, 355–370.

Soda, M. E., Madkor, S. A., & Tong, P. S. (2000). Adjunct Cultures: Recent Development and Potential Significance to the Cheese Industry. Journal of Dairy Science, 83(5), 609–616. doi: 10.3168/jds.S0022-0302(00)74920-4.

Sousa, M. J., & McSweeney, P. L. H. (2001). Studies on the ripening of Cooleeney, an Irish farmhouse Camembert‐type cheese. Irish Journal of Agricultural and Food Research, 40(1), 83–95. URL:

Vassal, L., Monnet, V., Le Bars, D., Roux, C., & Gripon, J. C. (1986). Relation Entre le pH, la Composition Chimique et la Texture des Fromages de Type Camembert. Le Lait, INRA Editions, 66, 341–351. URL: document.

Vassal, L., Monnet, V., Le Bars, D., Roux, C., & Gripon, J. C. (1986). Relation between pH, chemical composition and texture of Camembert cheese. Lait, 66, 341–351.

Wolfe, B. E., Button, J. E., Santarelli, M., & Dutton, R. J. (2014). Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell, 158, 422–433. doi: 10.1016/j.cell.2014.05.041.

Abstract views: 41
PDF Downloads: 11
How to Cite
SlyvkaІ., TsisarykО., & Musiy, L. (2020). The technology of soft Camembert cheese with the usage of different bacterial preparations. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 22(94), 71-79.

Most read articles by the same author(s)