Crystallomorphological and physical properties of apatite from carbonatites


  • A. O. Shevchyk National University “Lviv Polytechnik”, Lviv, Ukraine
  • I. G. Svidrak National University “Lviv Polytechnik”, Lviv, Ukraine http://orcid.org/0000-0003-1811-2011
  • N. T. Bilyk Ivan Franko National University of Lviv, Lviv, Ukraine
  • I. V. Poberezhska Ivan Franko National University of Lviv, Lviv, Ukraine
Keywords: apatite, carbonatite, luminescence, isomorphic impurities, rare earth elements

Abstract

This paper presents the results of the study of x-ray luminescence of apatite from different genetic types of apatite species in order to study its geochemical characteristics and the possibility of using as a mineral indicator the conditions of ore formation and for search purposes. Apatite Ca2Ca3(F,Cl,OH)2[PO4]3 contains impurities Gd3+, Ce3+, Eu2+, Dy3+, Sm3+, Nd3+ as well as Mn2+ and others. Syngony is hexagonal. Crystals of prismatic habit; usually ending in dipyramide or basopinacoid. Sometimes forms tabular crystals. A hexagonal prism is often preserved. Color greenish, bluish-green; pinkish-purple, gray; often white, colorless or brown. Quite often translucent due to the presence of small internal cracks and inclusions; sometimes the inclusions are arranged oriented, preferably parallel to the main axis of the crystal. Brightly luminesces in cathode, x-ray and ultraviolet rays. The intensity and color of luminescence varies widely depending on the impurities. The presence of three crystal chemical positions in the structure of apatite – two cationic and one anionic makes it possible to be realized in the mineral by a wide heterovalent substitution. The distribution of isomorphic impurities between the crystal chemical positions will depend on the type of cation, its amount, as well as anionic substitutions in apatite. To determine the luminescence intensity values of the characteristic isomorphic impurities of apatite TR3+ (Gd3+, Ce3+, Eu2+, Dy3+, Sm3+, Nd3+) and Mn2+, the X-ray luminescence method was applied. Apatites of different genetic types of the Aldan, Baltic Shields, the Baikal region (Russia), the Sette-Daban Range, and the Maimech-Kotui Province (Yakutia) and the Ukrainian Shield were investigated. The obtained values of luminescence intensity of TR3+ and Mn2+ can be used to diagnose the genetic type of apatite species, the conditions of mineral formation, the type of their mineralization and for search purposes. On the basis of factor analysis, it can be concluded that the intensity of the luminescence centers of rare earth elements in the apatites of each complex depends on the relative age position of the mineral in the groups of successively formed rocks. Analysis of apatite carbonatites from different deposits showed minimal fluctuations in the ratios of radiation intensity of X-ray centers (Ce3+, Sm3+, Mn2+, Eu2+), which may indicate a close geochemical situation and, consequently, the only source of matter in the formation of carbonates. Analysis of apatite carbonatites from different fields showed minimal fluctuations in the radiation intensity ratios of the centers of X-ray luminescence (Ce3+, Sm3+, Mn2+, Eu2+), which, in my opinion, may indicate a close geochemical situation and, as a consequence, the substance or the result.

References

Bekesha, S. M., & Bilyk, N. T. (2015). Diahnostyka mineraliv shlikhiv: metodychni vkazivky do laboratornykh za-niat z kursu “Metody mineralohichnykh doslidzhen”. Lvivskyi natsionalnyi universytet imeni Ivana Franka (in Ukrainian).

Belov, N. V. (1939). Ob izomorfnyh zameshhenijah v gruppe apatita. DAN SSSR, 22(2), 90–93 (in Russian).

Borisov, S. V., & Klevcova, R. F. (1964). Kristallohimija nekotoryh mineralov gruppy apatita. V kn.: Rent-genografija mineral'nogo syr'ja. M. 4, 62–66 (in Russian).

Bouzari, F., Hart, C. J. R., Bissig, T., & Barker, S. (2016). Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits. Economic Geology, 111(6), 1397–1410. doi: 10.2113/econgeo.111.6.1397.

Bulah, A. G. (1983). Genezis Seligdarskogo mestorozhdenija apatita i problema poiska ego analo-gov. Geologija, poiski i razvedka nerudnyh poleznyh iskopaemyh. L.: LGI, 74–80 (in Russian).

Deer, W. A., Howie, R. A., Zussman, J., & Chang, ELY. (1996). The Rock-Jbrming Minerals, 2nd cdn, Geological Society, London, 297–334.

Dubyna, O. V., Kryvdik, S. H., & Soboliev, V. B. (2012). Izomorfizm v TR-apatytakh Chernihivskoho karbonatyto-voho masyvu. Mineralohichnyi zhurnal, 34(3), 22–33. URL: https://igmof.org.ua/uk/content/ ізоморфізм-в-tr-апатитах-чернігівського-карбонатитового-масиву (in Ukrainian).

Dubyna, O. V., Kryvdik, S. H., Samchuk, A. I., Krasiuk, O. P., & Amashukeli, Yu. A. (2012). Zakonomirnosti rozpodilu REE, Y i Sr v apatytakh endohennykh rodovyshch Ukrainskoho shchyta (za danymy ICP-MS). Mineralohichnyi zhurnal, 34(2), 80–99. URL: https://igmof.org.ua/uk/content/закономірності-розподілу-rее-y-і-sr-в-апатитах-ендогенних-родовищ-українського-щита-за (in Ukrainian).

Farver, J. R., & Giletti, B. J. (1989). Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determination. Geochim. Cosmochim, 53(7), 1621–1631. doi: 10.1016/0016-7037(89)90243-3.

Godovikov, A. A. (1983). Mineralogija. 2-e izd., M., Nedra (in Russian).

Gorobec, B. S., & Rogozhin, A. A. (2001). Spektry ljuminescencii mineralov: Spravochnik. M.: izd-vo VIMS (in Russian).

Gulij, V. N. (1985). Apatit v dokembrijskih porodah Aldanskogo shhita. Problemy metasomatizma i ru-doobrazovanija Zabajkal'ja. Novosibirsk, 135–139 (in Russian).

Gulij, V. N., Kopylova, L. N., & Kuznecov, G. V. (1989). Rentgenovskaja ljuminescencija pri razdelenii apati-tov. Sovetskaja geologija, 21, 86–93 (in Russian).

Knubovec, R. (2012). Chto takoe apatit? Klub Russkojazychnyh Uchenyh shtata Massachusuts. Vtoroe dyhanie. Sb. st. Boston, 27, 14–23 (in Rus-sian).

Lazarenko, E. K., Gershot, Ju. G., Buchinskaja, N. I. i dr. (1977). Mineralogija Krivorozhskogo bassejna. K.: Naukova dumka (in Russian).

Mel'nik, Ju. P., Siroshtan, P. I., Radchuk, V. V., i dr. (1984). Fiziko-himicheskie uslovija metamorfizma porod dokembrija. K.: Naukova dumka (in Russian).

Parfenov, V. D., & Judin, N. I. (1982). Metamorfogennaja apatitonosnost' drevnih tolshh Central'nogo Aldana. M.: Nauka (in Russian).

Portnov, A. M., & Gorobec, B. S. (1969). Ljuminescencija apatita iz razlichnyh tipov gornyh porod. Doklady Akademii nauk SSSR, 184(1), 199–202 (in Russian).

Povarennyh, A. S. (1966). Kristallohimicheskaja klassifikacija mineral'nyh vidov. Naukova dumka. Kiev (in Russian).

Rimskaja-Korsakova, O. M., Krasnova, N. I., & Kopylova, L. N. (1979). Tipohimicheskie osobennosti apatita Kovdorskogo kompleksnogo mestorozhdeni-ja. Mineralogija i geohimija, 6, 58–70 (in Russian).

Roeder, P. L., MacArthur, D., Ma, X. P., & Palmer, G. R. (1987). Cathodoluminescence and microprobe study of rare-earth elements in apatite. Amer. Mineral., 72(7-8), 801–811. URL: https://pubs.geoscienceworld.org/msa/ ammin/article-abstract/72/7-8/801/104985/ Cathodoluminescence-and-microprobe-study-of-rare.

Ronsbo, J. G. (1989). Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilimaussaq intrusion, South Greenland, and the petrological implications. Amer. Mineral., 74(7-8), 896–901. URL: https://pubs.geoscienceworld.org/msa/ammin/ article-abstract/74/7-8/896/42295/Coupled-substitutions-involving-REEs-and-Na-and-Si?redirectedFrom=fulltext.

Rundkvist, D. V. (1978). Kriterii prognoznoj ocenki territorii na tverdye poleznye iskopaemye. L.: Nedr (in Russian).

Stoppa, F., & Liu, Y. (1995). Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. Eur. J. Mineral., 7, 391–402. doi: 10.1127/ejm/7/2/0391.

Tarashhan, A. N., Kuznecov, G. V., & Povarennyh, A. S. (1975). O strukturnom polozhenii redkozemel'nyh cen-trov izluchenija v apatite. Geologicheskij zhurnal, 35(5), 82–86 (in Russian).

Watson, E. B., & Green, T. H. (1981). Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet. Sci. Lett., 56, 405–421. doi: 10.1016/0012-821X(81)90144-8.

Zverev, A. S., & Fajzullin, R. M. (1980). Geologija mestorozhdenij apatita, metodika ih prognozirovanija i poiskov. M.: Nedra (in Russian).

Abstract views: 15
PDF Downloads: 25
Published
2021-04-09
How to Cite
Shevchyk, A., Svidrak, I., Bilyk, N., & Poberezhska, I. (2021). Crystallomorphological and physical properties of apatite from carbonatites. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 23(95), 25-32. https://doi.org/10.32718/nvlvet-f9505