Influence of vacuum microwave drying parameters on the physicochemical properties of red beetroots


Keywords: red beetroots, vacuum microwave drying, betalain, color, microwave power, total phenolic

Abstract

In recent years, the consumption of red beetroots has increased significantly due to its good taste, high nutritional value and abundant active compounds. Red beetroot is prone to spoilage due to its high moisture content, making it perishable. Vacuum microwave drying is a gentle drying method by inducing fast water evaporation from food products at low temperature, which can improves the product quality. The objective of this study was to investigate the effects of vacuum microwave drying parameters, including microwave power (500, 1000, and 1500 W) and vacuum degree (50, 70, and 90 KPa), on the physicochemical properties (drying time, rehydration ratio, color change, and contents of betalain and total phenolic) of red beetroots. The results showed that microwave power and vacuum degree had significant effects on the physicochemical properties of red beetroots. All the red beetroots after vacuum microwave drying had higher lightness (L*), lower redness (a*) and yellowness (b*) than that of fresh red beetroots. The drying time, rehydration ratio, betacyanin content and betaxanthin content of red beetroots decreased significantly with the increase of microwave power (P < 0.05), while the rehydration ratio, color parameters (a*, b*, and chroma values), betacyanin content and betaxanthin content of red beetroots significantly increased with the increase of vacuum degree (P < 0.05). Compared with other microwave powers, the red beetroots dried at 500 W showed longer drying time, higher rehydration ratio, more yellowish hue, and higher contents of betacyanin and betaxanthin. The lowest values of total color difference (∆E) and hue angle (H°) of dried red beetroots were obtained at microwave power of 1500 W. The dried red beetroots obtained at 90 KPa had the shortest drying time, the highest rehydration ratio, the best color, and the highest contents of betacyanin and betaxanthin. Meanwhile, the red beetroots dried at 50 KPa had the highest total phenolic content (12.47 ± 0.09 mg GAE/g). Based on the physicochemical properties of red beetroots, vacuum microwave drying at low microwave powers and high vacuum degree appears to be a suitable method for drying red beetroots.

References

Abers, J. E., & Wrolstad, R. E. (2006). Causative factors of color deterioration in strawberry preserves during processing and storage. Journal of Food Science, 44(1), 75–81. doi: 10.1111/j.1365-2621.1979.tb10008.x.

Alvarez-Parrilla, E., de la Rosa, L. A., Amarowicz, R., & Shahidi, F. (2011). Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. Journal of Agricultural and Food Chemistry, 59(1), 163–173. doi: 10.1021/jf103434u.

Caparino, O. A., Tang, J., Nindo, C. I., Sablani, S. S., Powers, J. R., & Fellman J. K. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine ‘Carabao’ var.) powder. Journal of Food Engineering, 111, 135–148. doi: 10.1016/j.jfoodeng.2012.01.010.

Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., & Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry, 272, 192–200. doi: 10.1016/j.foodchem.2018.08.022.

Dudley, G. B., Richert, R., & Stiegman, A. (2015). On the existence of and mechanism for microwave-specific reaction rate enhancement. Chemical Science, 6(4), 2144–2152. doi: 10.1039/C4SC03372H.

Hu, G., Zhang, M., Mujumdar, A. S., Du, W., & Sun, J. (2006). Effects of different drying methods on the quality changes of granular edamame. Drying Technology, 24(8), 1025–1032. doi: 10.1080/07373930600776217.

Jin, W., Zhang, M., & Shi, W. (2018). Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology, 37(3), 387–396. doi: 10.1080/07373937.2018.1458735.

Köprüalan, Ö., Altay, Ö., Bodruk, A., & Kaymak-Ertekin, F. (2021). Effect of hybrid drying method on physical, textural and antioxidant properties of pumpkin chips. Journal of Food Measurement and Characterization, 15(4), 2995–3004. doi: 10.1007/s11694-021-00866-1.

Krejcova, A., Cernohorsky, T., & Meixner, D. (2007). Elemental analysis of instant soups and seasoning mixtures by ICP–OES. Food Chemistry, 105(1), 242–247. doi: 10.1016/j.foodchem.2006.11.005.

Madhava Naidu, M. M., Vedashree, M., Satapathy, P., Khanum, H., Ramsamy, R., & Hebbar, H. U. (2016). Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry, 192, 849–856. doi:10.1016/j.foodchem.2015.07.076.

Ng, M. L., Sulaiman, R. (2018). Development of beetroot (Beta vulgaris) powder using foam mat drying. LWT–Food Science and Technology, 88, 80–86. doi: 10.1016/j.lwt.2017.08.032.

Nistor, O.-V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var Cylindra). Food Chemistry, 236, 59–67. doi: 10.1016/j.foodchem.2017.04.129.

Oliveira, S. P. A., Nascimento, H. M. A., Sampaio, K. B., & Souza, E. L. (2021). A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Critical Reviews in Food Science and Nutrition, 61(12), 2022–2033. doi: 10.1080/10408398.2020.1768510.

Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT–Food Science and Technology, 68, 98–104. doi: 10.1016/j.lwt.2015.12.029.

Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6, 36–60. doi: 10.1007/s11947-012-0867-9.

Scaman, C. H., & Durance, T. D. (2005). 19-Combined Microwave Vacuum-drying. In D. W. Sun (Ed.) Emerging Technologies for Food Processing (1st ed). Academic Press, Cambridge, USA, 507–533. doi: 10.1016/B978-012676757-5/50021-9.

Sremet (Ceclu), L., Nistor, O.-V., Andronoiu, D. G., Mocanu, G. D., Barbu, V. V., Maidan, A., Rudi, L., & Botez, E. (2020). Development of several hybrid drying methods used to obtain red beetroot powder. Food Chemistry, 310, 125637. doi: 10.1016/j.foodchem.2019.125637.

Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451. doi: 10.1021/jf048751y.

Székely, D., Vidák, K., Furulyás, D., Ribárszki, Á., & Stéger-Máté, M. (2019). Effect of drying methods on physicochemical parameters of different red beetroots (Beta vulgaris L.) species. Periodica Polytechnica Chemical Engineering, 63(3), 485–490. doi: 10.3311/PPch.13104.

Tekgül, Y., & Baysal, T. (2019). Optimization of process conditions for vacuum microwave drying of lemon peel by response surface methodology: Quality characteristics and volatile compounds. Journal of Food Process Engineering, 42(5), e13080. doi: 10.1111/jfpe.13080.

Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., & Duan, X. (2019). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 38(10), 1378–1388. doi: 10.1080/07373937.2019.1656642.

Zielinska, M., & Zielinska, D. (2019). Effects of freezing, convective and microwave-vacuum drying on the content of bioactive compounds and color of cranberries. LWT–Food Science and Technology, 104, 202–209. doi: 10.1016/j.lwt.2019.01.041

Abstract views: 51
PDF Downloads: 31
Published
2021-12-02
How to Cite
Liu, Y., Sabadash, S., Gao, D., Shang, F., & Duan, Z. (2021). Influence of vacuum microwave drying parameters on the physicochemical properties of red beetroots. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 23(96), 8-14. https://doi.org/10.32718/nvlvet-f9602