Fatty acid composition of swine fat when using different feedstuffs in diets


Keywords: swine fat, fatty acids, diet, foodstuffs, product quality.

Abstract

Human health is largely determined by the influence of environmental factors, including the quality of foodstuff. Nutrition is one of the most important factors, so the application of modern knowledge about the energy value and fatty acid composition of basic foods, as well as the organization of a rational diet of people on this basis can significantly improve it. This article analyses data on the fatty acid composition of fat when using different feedstuffs in swine diets. The use of additives in animal diets in order to increase their productivity affects the quality of products, in particular the fatty acid composition of swine fat, which influences the physical and chemical properties and technological properties of food products. The role of saturated and polyunsaturated fatty acids in human and animal bodies, which play an extremely important role in metabolism, is described. The data on their content in fat and swine products as the main source of these substances in the human diet are summarised. The importance of a balanced intake of polyunsaturated fatty acids in the human diet is discussed, which contributes to the prevention of various diseases, and a review of the results of studies on the effect of various feedstuffs on the fatty acid composition of swine products is given, since the content of individual fatty acids that are not synthesised in the animal body is affected by feed quality and the presence of fatty acids in lipids of feed, which determine the quality of human foods.

References

Berhe, D. T., Eskildsen, C. E., Lametsch, R., Hviid, M. S., van den Berg, F., & Engelsen, S. B. (2016). Prediction of total fatty acid parameters and individual fatty acids in pork backfat using Raman spectroscopy and chemometrics: Understanding the cage of covariance between highly correlated fat parameters. Meat Science, 111, 18–26. doi: 10.1016/j.meatsci.2015.08.009.

Birta, G., Byrgy, Yu., Nazarenko, V. & Goryachova, O. (2016). Physical and chemical indices of subcutaneous lard pigs of different direction performance. Bìol. Tvarin, 18(4), 9–13. doi: 10.15407/animbiol18.04.009 (in Ukranian).

Bondarenko, V. V., & Hutsol, A. V. (2016). Pokaznyky yakosti svynyny pry zghodovuvanni BVMD “Minaktyvit”. Ahrarna nauka ta kharchovi tekhnolohii: zb. nauk. prats VNAU, 2(92), 15–21 (in Ukrainian).

Gacek, М., Kosiba, G., & Wojtowicz, А. (2020). Frequency of consuming selected product groups among Polish and Spanish physic al education students. Rocz Panstw Zakl Hig, 71(3), 261–270. doi: 10.32394/rpzh.2020.0121.

Gladyshev, M. Y. (2012). Nezamenimyye polynenasyshchennyye zhyrnyye kisloty i ih istochniki dlya cheloveka. Journal of Siberian Federal University. Biology, 4, 352–386 (in Russian).

Hlavatchuk, V. A. (2014). Zhyrnokyslotnyi sklad sala svynei pry zghodovuvanni fermentnoho preparatu MEK-BTU-6. Naukovyi visnyk LNUVMBT imeni S. Z. Hzhytskoho, 16(2(59), 36–41 (in Ukrainian).

Glorieux, S., Steen, L., De Brabanter, J., Foubert, I., & Fraeye, I. (2018). Effect of Meat Type, Animal Fatty Acid Composition, and Isothermal Temperature on the Viscoelastic Properties of Meat Batters. Journal of Food Science, 83(6), 1596–1604. doi: 10.1111/1750-3841.14182.

Holinei, H. M., & Kvasha, V. I. (2011). Vplyv vykorystannia u ratsionakh kabanchykiv roslynnykh vysokobilkovykh i zhyromistkykh kormiv u skladi rehionalnykh zernosumishei z BVMD-1 na yikh zabiini yakosti. Zbirnyk nauk. prats PDATU, 19, 37–39 (in Ukrainian).

Huang, J., Zhao, Q., Bu, W., Zhang, C., Yang, Z., Zhang, X., & Zhang, K. (2020). Ultrasound-assisted hydrolysis of lard for free fatty acids catalyzed by combined two lipases in aqueous medium. Bioengineered, 11(1), 241–250. doi: 10.1080/21655979.2020.1729678.

Kang, E. S., Hur, J., Jo, Y., Kim, H. J., Han, S. G., & Seo, H. G. (2019). Comparative effects of nanoemulsions loaded with duck oil and lard oil on palmitate‐induced lipotoxicity. Journal of Food Biochemistry, 44(2), e13117. doi: 10.1111/jfbc.13117.

Larsen, S. T.,Wiegand, B.R., Parrish, Jr.F.C., Swan, J.E., & Sparks, J. C. (2009). Dietary conjugated linoleic acid changes belly and bacon quality from pigs fed varied lipid sources. American Society of Animal Science. All rights reserved, 87(1), 285–295. doi: 10.2527/jas.2008.1213.

Liu, P., Kerr, B. J., Chen, C., Weber, T. E., Johnston, L. J., & Shurson, G. C. (2014). Influence of thermally oxidized vegetable oils and animal fats on energy and nutrient digestibility in young pigs. Journal of Animal Science, 92(7), 2980–2986. doi: 10.2527/jas.2012-5711.

Migliaccio, V., Sica, R., Di Gregorio, I., Putti, R., & Lionet-ti, L. (2019). High-Fish Oil and High-Lard Diets Differently Affect Testicular Antioxidant Defense and Mitochondrial Fusion/Fission Balance in Male Wistar Rats: Potential Protective Effect of ω3 Polyunsaturated Fatty Acids Targeting Mitochondria Dynamics. International Journal of Molecular Sciences, 20(12), 3110. doi: 10.3390/ijms20123110.

Patel, J. P., & Brocks, D. R. (2009). The effect of oral lipids and circulating lipoproteins on the metabolism of drugs. Expert Opinion on Drug Metabolism & Toxicology, 5(11), 1385–1398. doi: 10.1517/17425250903176439.

Pavlisova, J., Bardova, K., Stankova, B., Tvrzicka, E., Kopecky, J., & Rossmeisl, M. (2016). Corn oil versus lard: Metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie, 124, 150–162. doi: 10.1016/j.biochi.2015.07.001.

Serra, A., Buccioni, A., Rodriguez-Estrada, M. T., Conte, G., Cappucci, A., & Mele, M. (2014). Fatty acid composition, oxidation status and volatile organic compounds in “Colonnata” lard from Large White or Cinta Senese pigs as affected by curing time. Meat Science, 97(4), 504–512. doi: 10.1016/j.meatsci.2014.03.002.

Simmons, G., Pruitt, W., & Pruitt, K. (2015). Diverse Roles of SIRT1 in Cancer Biology and Lipid Metabolism. International Journal of Molecular Sciences, 16(1), 950–965. doi: 10.3390/ijms16010950.

Sukhovukha, S. M. (2013). Vplyv vidstoiu soniashnykovoi olii na zhyrnokyslotnyi sklad sala svynei. Naukovyi visnyk LNUVMBT imeni S. Z. Hzhytskoho, 1(55),191–194 (in Ukrainian).

Teng, K.-T., Nagapan, G., Cheng, H. M., & Nesaretnam, K. (2011). Palm Olein and Olive Oil Cause a Higher Increase in Postprandial Lipemia Compared with Lard but Had No Effect on Plasma Glucose, Insulin and Adipocytokines. Lipids, 46(4), 381–388. doi: 10.1007/s11745-010-3516-y.

Tvrzicka, E, Kremmyda L.S., Stankova, В, & Zak, А. (2011) Fatty acids as biocompounds: their role in human metabolism, health and disease--a review. Part 1: classification, dietary sources and biological functions. Biomedical Papers, 155(2), 117–130. doi: 10.5507/bp.2011.038.

Waszkiewicz-Robak, В., Szterk, А, Rogalski, М, Rambuszek, М, Kruk, М, & Rokowska, Е. (2015). Nutritional value of raw pork depending on the fat type contents in pigs feed. Acta Sci Pol Technol Aliment. 14(2). 153–163. doi: 10.17306/J.AFS.2015.2.17.

Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, & R. I., Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343–358. doi: 10.1016/j.meatsci.2007.07.019.

Yanty, N. A. M., Marikkar, J. M. N., Man, Y. B. C., & Long, K. (2011). Composition and Thermal Analysis of Lard Stearin and Lard Olein. Journal of Oleo Science, 60(7), 333–338. doi: 10.5650/jos.60.333.

Ye, Z., Li, R., Cao, C., Xu, Y.-J., Cao, P., Li, Q., & Liu, Y. (2019). Fatty acid profiles of typical dietary lipids after gastrointestinal digestion and absorbtion: A combination study between in-vitro and in-vivo. Food Chemistry, 280, 34–44. doi: 10.1016/j.foodchem.2018.12.032.

Zaytseva, L. V. (2010) Rol razlichnykh zhirnykh kislot v pitanii cheloveka i pri proizvodstve pishchevykh produktov. Pishchevaya promyshlennost, 10, 60–63 (in Russian).

Abstract views: 38
PDF Downloads: 53
Published
2021-12-02
How to Cite
Chyzhanska, N., & Polishchuk, A. (2021). Fatty acid composition of swine fat when using different feedstuffs in diets. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 23(96), 19-22. https://doi.org/10.32718/nvlvet-f9604