The use of the strain Enterococcus faecium in the technology of yogurt “Carpathian” as an ancillary culture with probiotic properties

  • O. Tsisaryk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • I. Slyvka Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • G. Dronyk Bukovinian State Agricultural Research Station of the Institute of Agriculture of Carpathian Region of NAAS, Chernivtsi, Ukraine
  • L. Musii Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
  • O. Senchenko Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine
Keywords: lactic acid bacteria, technology, probiotics, fermentation, yogurt


The results of research on the technological features of the production of yogurt "Carpathian" are covered in the article. The bacterial preparation of Chr. Hansen series YoFlex Premium 1.0 (L. bulgaricus, S. thermophilus) and Creamy 1.0 (L. bulgaricus, S. thermophilus, L. rhamnosus) and strain E. faecium SB 18, which is isolated from traditional Carpathian fermented products were used to produce research yogurt samples. It was found that when the strains were used together, the microorganisms were compatible, did not show interspecific antagonism and did not inhibit the enzymatic process. Based on yogurt microorganisms and E. faecium SB 18 strain, seven prototypes of yogurt were created: № 1 (100 %) – control, Premium + Creamy; № 2 (100 %) – control, pure culture of E. faecium SB 18; №3 (100:100 %) – control, (Premium + Creamy) + E. faecium SB 18; №4 (50:50 %) – (Premium + Creamy) + Ent. faecium SB 18; № 5 (70:30 %) – (Premium + Creamy) + Ent. faecium SB 18; № 6 (80:20 %) – (Premium + Creamy) + Ent. faecium SB 18; № 7 (90:10 %) – (Premium + Creamy) + Ent. faecium SB 18. The fastest fermentation took place in sample № 1 (pH 4.78 units – 4 h), the slowest in sample №2 (pH 4.81 units – 6 h), where only pure culture of E. faecium SB 18 was used. The fermentation time in sample №3 was initially slower and then more active (pH 4.77 units – 4 h). The acidity increased more moderately in samples № 4, 5, 6, 7 for 4 h, and at the end of fermentation was 4.84 units, 4.76 units, 4.81 units. and 4.75 units. in accordance. According to organoleptic evaluation, the experimental samples were characterized by slight differences. In general, it is noted that the addition of microbial culture of E. faecium SB 18 improves the taste of yogurt. Samples № 6 and № 7 with the addition of E. faecium SB 18 strain in the amount of 20 and 10 % were noted for the best organoleptic properties. According to the score scale, the above-mentioned samples received the highest number of points – 48, out of a possible 50. The dependence of the acidity of yogurt during storage was established on the dose and composition of the bacterial preparation. It was investigated that the acidity of yogurt, which contained an additional strain of E. faecium SB 18 in the ratios of 100:100 (sample 3) and 50:50 (sample 4), tends to increase rapidly in acidity, which is associated with increased lactic acid bacteria. It was found that partial replacement of the amount of traditional yogurt leaven in the ratio of 70:30 (sample 5), 80:20 (sample 6) and 90:10 (sample 7) provides the optimal course of the enzymatic process during fermentation and storage. It was found that the use of traditional yogurt leaven YoFlex Premium 1.0 and Creamy 1.0. together with strain E. faecium SB 18 in a ratio of 80:20, provides excellent consumer properties of the product.


Akpinar, A., Saygili, D., & Yerlikaya, O. (2020). Production of set-type yoghurt using Enterococcus faecium and Enterococcus durans strains with probiotic potential as starter adjuncts. International J. of Dairy Technology, 73(4), 726–736. doi: 10.1111/1471-0307.12714.

Andrade, J., Ascenção, K., Gullón, P., Henriques, S. M. S., Pinto, J. M. S., Rocha-Santos, T. A. P., Freitas, A. C., & Gomes, A. M. (2012). Production of conjugated linoleic acid by food-grade bacteria: A review. Int. J. Dairy Technol., 65(4), 467–481. doi: 10.1111/j.1471-0307.2012.00871.x.

Andrighetto, C., Knijff, E., Lombardi, A., Torriani, S., Vancanneyt, M., Kersters, K., Swings, J., & Dellaglio, F. (2001). Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. J. Dairy Res., 68(2), 303–316. doi: 10.1017/S0022029901004800.

Andrighetto, C., Marcazzan, G., Cariolato, D., Storti, A., Cattelan, A., & Lombardi, A. (2006). Isolation and characterization of microrganisms from traditional Triveneto cheeses. Sci. Tecn. Latt-Cas, 57309–318.

Behnsen, J., Deriu, E., Sassone-Corsi, M., & Raffatellu, M. (2013). Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med, 3(3), a010074. doi: 10.1101/cshperspect.a010074.

Câmara, S. P. A., Dapkevicius, A., Riquelme, C., Elias, R. B., Silva, C. C. G., Malcata, F. X., & Dapkevicius, M. L. N. E. (2019). Potential of lactic acid bacteria from Pico cheese for starter culture development. Food Sci. Technol. Int. 25(4), 303–317. doi: 10.1177/1082013218823129.

Didukh, N. A. (2008). Naukovi osnovy rozrobky tekhnolohii molochnykh produktiv funktsionalnoho pryznachennia: avtoref. dys. na zdobuttia naukovoho stupenia d-ra tekhn. nauk: 05.18.16. Didukh Nataliia Andriivna, Odesa (in Ukrainian).

Durlu-Ozkaya, F., Xanthopoulous, V., Tunail, N., & Litopoulou-Tzanetaki, E. (2001). Technologically important properties of lactic acid bacteria isolates from Beyaz cheese made from raw ewes’ milk. J. Appl. Microbiol, 91(5), 861–870. doi: 10.1046/j.1365-2672.2001.01448.x.

Fortina, M. G., Ricci, G., Borgo, F., Manachini, P.L., Arends, K., Schiwon, K., Abajy, M. Y., & Grohmann, E. (2008). A survey on biotechnological potential and safety of the novel Enterococcus species of dairy origin, E. italicus. Int. J. Food Microbiol, 123(3), 204–211. doi: 10.1016/j.ijfoodmicro.2008.01.014.

Franz, C., Huch, M., Abriouel, H., Holzapfel, W., & Galvez, A. (2011). Enterococci as probiotics and their implications in food safety. Int. J. Food Microbiol, 151(2), 125–140. doi: 10.1016/j.ijfoodmicro.2011.08.014.

García-Solache, M., & Rice, L. B. (2019). The Enterococcus: A model of adaptability to its environment. Clin. Microbiol. Rev., 32, e00058-18. doi: 10.1128/CMR.00058-18.

GenBank. MZ227257. Enterococcus faecium strain SB18 16S ribosomal RNA gene, partial sequence. URL:

Giraffa, G. (2003). Enterococci from foods. FEMS Microbiol. Rev., 26(2), 163–171. doi: 10.1111/j.1574-6976.2002.tb00608.x.

Graham, K., Stack, H., & Rea, R. (2020). Safety, beneficial and technological properties of enterococci for use in functional food applications–a review. Crit. Rev. Food Sci. Nutr., 60(22), 3836–3861. doi: 10.1080/10408398.2019.1709800.

Gútiez, L., Borrero, J., Jiménez, J. J., Gómez-Sala, B., Recio, I., Cintas, L. M., Herranz, C., & Hernández, P. E. (2014). Genetic and biochemical evidence that recombinant Enterococcus spp. strains expressing gelatinase (GelE) produce bovine milk-derived hydrolysates with high angiotensin converting-enzyme-inhibitory activity. J. Agric. Food Chem., 62(24), 5555–5564. doi: 10.1021/jf5006269.

Hadji-Sfaxi, I., El-Ghaish, S., Ahmadova, A. et al. (2018). Antimicrobial activity and safety of use of Enterococcus faecium PC4.1 isolated from Mongol yogurt. Food Control, 22(12), 2020–2027 doi: 10.1016/j.foodcont.2011.05.023.

Kishino, S., Ogawa, J., Omura, Y., Matsumura, K., & Shimizu, S. (2002). Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J. Am. Oil Chem. Soc., 79(2), 159–163. doi: 10.1007/s11746-002-0451-4.

Kushnir, I., Tsisaryk, O., Shalovylo, S., Gutyj, B., Kushnir, G., Slyvka, I., & Musiy, L. (2020). The ability of enterococci extracted from traditional Carpathian cheese bryndza to produce biologically active substances. Ukrainian Journal of Veterinary and Agricultural Sciences, 3(3), 15–19. doi: 10.32718/ujvas3-3.0.

Kushnir, I., Tsisaryk, O., Slyvka, I., Musiy, L., Kushnir, I., & Semen, I. (2020). Growth intensity and antibacterial properties of Enterococcus faecium and Enterococcus durans strains isolated from traditional Carpathian brynza. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 22(92), 42–49. doi: 10.32718/nvlvet-a9208.

Ljungh, A., & Wadstrom, T. (2006). Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol, 7(2), 73–89. URL:

Marshall, V. M. (2007). Probiotics and Prebiotics: Scientific Aspects (2005). Int. J. Dairy Tech, 60(1), 63–64. doi: 10.1111/j.1471-0307.2007.00272.x.

McSweeney, P. (2004). Biochemistry of cheese ripening. Int. J. Dairy Technol 57(2-3), 127–144. doi: 10.1111/j.1471-0307.2004.00147.x.

Muguerza, B., Ramos, M., Sánchez, E., Manso, M. A., Miguel, M., Aleixandre, A., Delgado, M. A., & Recio, I. (2006). Antihypertensive activity of milk fermented by Enterococcus faecalis strains isolated from raw milk. Int. Dairy J., 16(1), 61–69. doi: 10.1016/j.idairyj.2005.01.001.

Nascimento, L. C. S., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Probiotic potential and safety of enterococci strains. Ann. Microbiol, 69, 241–252. doi: 10.1007/s13213-018-1412-5.

Ozen, M., & Dinleyici, E. (2015). The history of probiotics: the untold story. Benef Microbes, 6(2), 159–165. doi: 10.3920/BM2014.0103.

Perin, L. M., Belviso, S., Dal Bello, B., Nero, L. A., & Cocolin, L. (2017). Technological properties and biogenic amines production by bacteriocinogenic lactococci and enterococci strains isolated from raw goat’s milk. J. Food Prot, 80(1), 151–157. doi: 10.4315/0362-028X.JFP-16-267.

Quirós, A., Ramos, M., Muguerza, B., Delgado, M.A., Miguel, M., Aleixandre, A., & Recio, I. (2007). Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy J., 17(1), 33–41. doi: 10.1016/j.idairyj.2005.12.011.

Regazzo, A., Dalt, L., Lombardi, A., Andrighetto, C., & Negro, A. (2010). Fermented milks from Enterococcus faecalis TH563 and Lactobacillus delbrueckii subsp. bulgaricus LA2 manifest different degrees of ACE-inhibitory and immunomodulatory activities. Dairy Science & Technology, 90(4), 469–476. doi: 10.1051/dst/2010009.

Romanchuk, I. O., Rudakova, T. V., Andreus, S. M., & Moiseieva, L. O. (2015). Kharchova tsinnist funktsionalnoho kyslomolochnoho produktu herodiietychnoho pryznachennia. Prodovolchi resursy. Tekhnichni nauky, 4, 23–26 (in Ukrainian).

Sarantinopoulos, P., Andrighetto, C., Gerogalaki, M. D., Rea, M. C., Lombardi, A., Cogan, T. M., Kalantzopoulos, G., & Tsakalidou, E. (2001). Biochemical properties of enterococci relevant to their technological performance. Int. Dairy J., 11(8), 621–647. doi: 10.1016/S0958-6946(01)00087-5.

Serio, A., Chaves-López, C., Paparella, A., & Suzzi, G. (2010). Evaluation of metabolic activities of enterococci isolated from Pecorino Abruzzese cheese. Int. Dairy J., 20(7), 459–464. doi: 10.1016/j.idairyj.2010.02.005.

Slyvka, I. M., Tsisaryk, O. Y., Dronyk, G. V., & Musiy, L. Y. (2018). Strains of lactic acid bacteria isolated from traditional Carpathian cheeses. Regulatory Mechanisms in Biosystems, 9(1), 62–68. doi: 10.15421/021808.

Abstract views: 25
PDF Downloads: 16
How to Cite
Tsisaryk, O., Slyvka, I., Dronyk, G., Musii, L., & Senchenko, O. (2021). The use of the strain Enterococcus faecium in the technology of yogurt “Carpathian” as an ancillary culture with probiotic properties. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies, 23(96), 93-101.