TY - JOUR AU - N. Kondratiuk AU - T. Stepanova AU - O. Chernushenko PY - 2019/04/23 Y2 - 2024/03/29 TI - Analysis of innovative technologies of hydrogels from uronate polysaccharides and biodegradable films on their basis JF - Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Food Technologies JA - nvlvetvf VL - 21 IS - 91 SE - Articles DO - 10.32718/nvlvet-f9117 UR - https://nvlvet.com.ua/index.php/food/article/view/3672 AB - The article is devoted to the analysis of the state and dynamics of scientific developments in the field of creating products for life and health, based on hydrogels from uronate polysaccharides (HUP). The article is reflected the results of the global scientific research monitoring and their changes in the field of technologies for the creation and use of HUP. The results of a retrospective analysis of existing technologies based on poorly studied in the field of food technologies uronic acids, as glucuronic, idouronic, hyaluronic were presented. The study showed, that nowadays the industry of products with their content is acquiring market traits, although it has insufficient scientific substantiation. Development segments with widely used uronate polysaccharides – pectins and alginates – according to the types of hydrogels (swollen hydrogel, cross-linked hydrogel, xerogel) were developed. The article presents examples and identified the required properties of substances intended for immobilization or encapsulation in the hydrogel matrix of uronate polysaccharides. The basic principles of uronate polysaccharides crosslinking chains in the hydrogel phase are determined. Possible methods of biologically active substances (BAS) retention in the matrix of uronate polysaccharides to reduce the risk of premature oxidation, destruction, decomposition, decomposition, evaporation were described. The search for information allowed us to identify key technological areas for the development of scientific research on the creation and use of HUP to improve people's lives and health. The archives of the world's leading publications in the field of food chemistry, biotechnology, food engineering, chemistry of new materials, food polymers and hydrocolloids were analyzed. The authors used in their work the resources of the Science Direct search system, which made it possible to determine the most promising and modern lines of development of HUP technologies and products based on them. The analysis of technologies has shown that existing innovative technologies are formed on “basic” technologies for producing solutions of high-molecular compounds under various conditions. Active modernization is carried out in the direction of creating products with immobilized biologically active substances, as well as in attempts to compose a composition with other polysaccharides and/or peptide components. The article notes that existing technologies allow developing other technologies with the help of which it is possible to expand the field of HUP application. ER -