Frequency of dea 1.1 antigen in german shepherds

A. Milczak, Beata Abramowicz, Jacek Madany, Dagmara Winiarczyk, Karolina Wrześniewska, Diana Bochyńska, Sima Sahinduran*
beata.abramowicz13@gmail.com

University of Life Sciences in Lublin, Veterinary Medicine Faculty, Department of Internal Diseases, Lublin, Poland
*Mehmet Akif Ersoy University, Department of Internal Medicine, Burdur, Turkey

Objectives: A correlation between blood type and the incidence of certain diseases in humans has been established many years ago. It may be assumed that similar correlations could occur in dogs. Therefore, establishing the geographical and breed distribution of erythrocyte surface antigens in dogs may be of academic interest and useful in practice too. The aim of the study was the assessment of DEA 1.1 frequency among German Shepherds in the Lublin region of Poland.

Material and methods: Our study involved 20 German Shepherds from Eastern Poland. The presence of blood antigen was detected using a quick immunochromatographic test. In 9 cases a donor–recipient compatibility test was also performed.

Results: The antigen DEA 1.1 was detected in 15% of dogs. A clear, macroscopically visible agglutination did not occur in any of the donor–recipient compatibility tests.

Conclusion: The breed studied may therefore be recognised as a suitable blood donor.

Key words: dogs, German Shepherds, blood, DEA 1.1 antigen, erythrocyte, quick immunochromatographic test, agglutination.

Introduction

The correlation between blood type and the incidence of certain diseases in humans has been well-known for a significant period of time. For instance, individuals with blood type B are more susceptible to St. pneumoniae and E. coli infections. Also, during smallpox epidemics in the past the incidence of this disease was higher in people with blood type A (Korsak and Łętowska, 2009). It may be assumed that similar correlations occur in animals, including dogs. Unfortunately, as far as dogs are concerned we do not have any data to confirm this thesis. The current level of knowledge about the geographical distribution of erythrocyte surface antigens in dogs is still incomplete (Gračner et al., 2007; Arikan et al., 2009; Ognean et al., 2009; Kessler et al., 2010). Collecting data related to this problem would be a good starting point for further research. This could be accomplished by individual researchers sharing their data. Thus, cooperation between scientific centres is essential.

As well as producing scientifically significant results immunohaematological tests could also have practical applications. Due to the widespread use of blood transfusion therapy in veterinary medicine, establishing the blood types of the donor and the recipient is of fundamental importance for the assessment of transfusion safety. As far as dogs are concerned, the best-characterised incompatibility between the donor and the recipient in the blood group system DEA 1 may cause early transfusion-associated haemolytic reactions in this species (Corato et al., 1997; Hohenhaus, 2004; Ognean et al., 2009). A more complete set of data regarding the prevalence of the DEA 1.1 antigen in various breeds of dog would facilitate the search for blood group compatible donors.

The aim of our study was to assess the frequency of DEA 1.1 among German Shepherds in eastern Poland. This breed was chosen due to the fact that it is widely distributed all over the world. The results may serve as a starting point for mapping the global distribution of blood group antigens in the dog population. The general serological and antigenic characteristics of the blood of these dogs were also evaluated.

Material and methods

Blood samples were taken from 20 German shepherds for the purposes of this study. The group consisted of 12
tube at +4°C. The presence of DEA 1.1 in EDTA whole
agglutination activator, and 2 ml was aspirated into a syringe
from which 200 μl of blood was taken to a tube contain-
ing K2 EDTA, while the remaining volume was diluted
5 ml of blood from the cranial vena cava of the fore-
limb was collected for immunohematological tests. 3 ml
of the blood was aspirated into a syringe tube with a co-
lab was collected for immunohaematological tests. 3 ml
any whole blood or blood component transfusions.

The dogs were under the supervision of the Depart-
ment of Internal Diseases of Animals, University of Life
sciences in Lublin. Their owners brought them to the
department for prophylactic examinations. The dogs were
clinically healthy. Their medical history did not reveal

Results

In all cases the tests produced unambiguous results.
No unexpected reactions were observed. The presence of
DEA 1.1 was demonstrated in 3 males (15% of the test
group). In the remaining 17 animals (85%), DEA 1.1 was
not found.

A clear, macroscopically visible agglutination did not
occur in any of the tests, haemolysis was not observed
either. Weak agglutination reactions, confirmed by a
microscopic examination (400 x magnification), were
found in 6 dogs (Table 1). Blood cells in 2 DEA 1.1 (+)
dogs agglutinated in the presence of the serum of one
DEA 1.1 (+) animal and three DEA 1.1 (-) animals.
Blood cells in two DEA 1.1 (-) dogs agglutinated in the presence of the serum of two other DEA 1.1 (-) animals.

Discussion

Recently many test kits for the determination of ca-
nine red blood cell surface antigens have appeared on the
market. The kits facilitate and accelerate testing, as well
as eliminating the impact of inter-analyst variability of
the results (Giger et al., 2003; Ognean et al., 2009;
Kessler et al., 2010; Kohn et al., 2012). They have cer-
tainly contributed to the increasing interest in blood typ-
ing in veterinary practice.

In the last decade, numerous papers on the distribution
of erythrocyte antigens in dogs have been published. The
studies usually involve mongrels, less often, pure breeds
of dogs. This is understandable due to the predominance
of mongrels in the canine population of most countries.
The frequency of DEA 1.1 in this group of dogs is esti-

ly. In the USA, the percentage of DEA 1.1 (+) dogs varies
between 42% (Hohenhaus, 2004) and approximately 60%
(Zubčić et al., 2008; Kessler et al., 2010) depending on
the author of the study. In Argentina and Brazil, the anti-
gen is found in 43% and 46% of dogs, respectively
(Novais et al., 1999; Montoro et al., 2000). In Romania,
the proportion is approximately 47%, and in Switzerland
49% (20, 23). A high percentage of DEA 1.1 (+) mongrels
(82%) was only observed in Japan (Arikan et al., 2009).

The situation is different in the case of pure breed
dogs. This group, considered as a whole, produces results
similar to the mean value for mongrels (Montoro et al.,
2000), but the differences become more significant when
individual breeds are analysed (Riond et al., 2011). The
breeds in which all animals are DEA 1.1 (+) include St.
Bernard Dogs (Ferreira et al., 2011) and Bernese Mount-
ain Dogs (1). Over 90%, of Rottweilers (Ferreira et al.,
2011; Riond et al., 2011), Croatian Sheepdogs (Zubčić et
al., 2008; Arikan et al., 2009) and Dalmatians in Croatia
(Arikan et al., 2009) are DEA 1.1 (+) animals. In the
USA, 24% of the Dalmatians studied were DEA 1.1 (-)
(Blais et al., 2007). The breeds in which DEA 1.1 occurs
with a frequency close to the average for the whole popu-
lation include the Istrian Hound, Kangal Dog and the
Spanish Greyhound (Arikan et al., 2009), whereas among
breeds such as the Boxer (Riond et al., 2011), Greyhound
(Arslan et al., 2007), Doberman (Ferreira et al., 2011) or
Thai Ridgeback (Suwanna et al., 2008), virtually no ani-
mals with DEA 1.1 were found.

Ferreira (Ferreira et al., 2011) also considered the
German Shepherd to be one of those breeds. In his study
on a group of German Shepherds in Portugal he did not
find any DEA 1.1 (+) dogs. However, entirely different
results were obtained by Hale in the USA in 1996 and
Novais in Brazil in 1999 (Novais et al., 1999). They
found that the proportion of DEA 1.1 (+) in German
Shepherds was 43.5% and 36.8%, respectively. The study
conducted by Novais in 2003 (Novais, 2003), revealed an
even higher percentage of DEA 1.1 (+) in German Shep-

hers (64%). One of the studies conducted in Australia
demonstrated that approximately 30% of local German
Shepherds were DEA 1.1 (+) (Merwe et al., 2002). Es-
etes (Esteves et al., 2011) in Porto Alegre obtained dif-
ferent data. Only 10% of the dogs he studied were DEA
1.1 (+). Van der Merwe (Merwe et al., 2002) from the
Republic of South Africa estimated that the percentage of
DEA 1.1 (+) German Shepherds is 16%. The results of
the studies conducted in our clinic are similar to those
presented by the last two authors in geographically distant
regions (16, 19). As can be seen from the above review,
different groups of German Shepherds are characterised
by different frequencies of DEA 1.1. The differences can
be explained by the small sizes of the test groups. The
number of dogs studied by Ferreira (Ferreira et al., 2011),
Novais (Novais et al., 1999), Esteves (Esteves et al.,
2011) and van der Merwe (Merwe et al., 2002) was 10,
19, 20 and 55, respectively. Moreover, the impact of geo-
ographical factors on the distribution of red blood cell
surface antigens should not be disregarded. The most
typical example of such correlations is the absence of
antigens A and B in the ABO blood group system in
South American Indians, or the absence of antigen B in

Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj, 2016, vol. 18, no 3 (71)

222
Aborigines (Korsak and Łętowska, 2009). This phenomenon is associated with the fact that these communities developed in isolation, and with their adaptation to specific epidemiological conditions. However, such a correlation should not be expected in German Shepherds. The breed is relatively new, it has been introduced to various environments, and, more importantly, it is subject to different breeding procedures, depending on the region. According to Esteves (Esteves et al., 2011), the significant differences between the proportion of DEA 1.1 (+) in dogs studied in Portugal and in Brazil can be explained by the different developments of breeding lines (18,19). It seems that the most appropriate way to explain the impact of the environment on the erythrocyte antigen’s structure in dogs is to examine primary breeds in their place of origin. This is why the studies conducted by Arikan (Arikan et al., 2009) or Ergul Ekiz (Ergul et al., 2011) on the traditional Turkish dog breeds: Kangal, Akbash, Catalburun and Kars are of academic interest. The size of the study groups was relatively large, and the proportion of DEA 1.1 (+) dogs in all four breeds was approximately 60%. Precise characterisation of immunohaematological properties of pure breed dogs, in association with epidemiological data regarding their susceptibility to diseases, might help to explain the biological role of DEA in the future. In addition to this, German Shepherds may also be suitable for further investigation. A comparison of the prevalence and incidence of certain especially infectious diseases among dog groups with different distributions of DEA 1.1 antigen may indicate the direction of future research.

The results of recipient – donor compatibility tests obtained in our studies confirm the widely acknowledged safety of blood transfusions for dogs. None of the tests revealed clearly visible agglutination; however, the percentage of weak reactions between the DEA 1.1 (+) dogs and DEA 1.1 (–) animals was significant. Canine blood serum is not considered to contain natural isoagglutinins. In fact, this is not entirely true, as in 10 – 17% of DEA 1.1 (–) dogs the presence of naturally occurring anti–DEA 1.1 antibodies was detected. However, the titers of these isoagglutinins are very low; therefore, they are considered to have no clinical importance (Hohenhaus, 2004; Tiwari et al., 2009; Dallabona, 2013). Our study did not explain if the antibodies of the DEA 1 system were responsible for blood cell agglutination. This issue was beyond the scope of the study.

Conclusion

A small percentage of DEA 1.1 (+) dogs (15%) was found in the studied group of German Shepherds from the Lublin area. The studied breed may therefore be recognised as suitable blood donors. The occurrence of weak agglutination reactions in the compatibility tests justifies further studies regarding the complete characterisation of serological blood properties in the German Shepherd breed.

Table 1.

<table>
<thead>
<tr>
<th></th>
<th>E2 DEA 1.1(+)</th>
<th>E3 DEA 1.1(+)</th>
<th>E4 DEA 1.1(+)</th>
<th>E5 DEA 1.1(+)</th>
<th>E6 DEA 1.1(+)</th>
<th>E7 DEA 1.1(+)</th>
<th>E8 DEA 1.1(+)</th>
<th>E9 DEA 1.1(+)</th>
<th>E10 DEA 1.1(+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S3 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S4 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S5 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S6 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S7 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S8 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S9 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S10 DEA 1.1(+)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

References

Dallabona, D. (2013). Occurrence of Natural Antibodies Against Erythrocyte Antigens In Dogs From Sinop

