Antibiotic resistance of lactis acid bacteria and the risk of its transmission with fermented dairy products

Keywords: lactic acid bacteria, antibiotic resistance, probiotics, antibiotics, gene reservoir, fermented dairy products.


Bacterial resistance to antimicrobials is a global health problem that affects not only on humane and veterinary medicine, but also on food products. The food chain can be by transmission of antibiotic resistance from bacterial populations to animals and humans. Literary data on the current state of the problem of antibiotic resistance of lactic acid bacteria (LAB) in Ukraine and in the world are given in the review. Possible ways of transferring resistance to antibiotics through fermented dairy products are shown. The main aspects of the danger of transmission of antibiotic resistance genes through the LAB and fermented dairy products are revealed. The main modern approaches to the definition of antibiotic resistance of microorganisms with the use of classical and modern research methods are described. The article provides the main sources of information on the safety of use of LAB as starter cultures and probiotics for the production of fermented dairy products. The hypothesis of the resistance gene's reservoir suggests that LAB can be a reservoir of sustainability genes, and the subsequent transfer of such genes to pathogenic and opportunistic microorganisms. The presence of antibiotic resistance genes transposed horizontally is inadmissible for lactobacilli, which are used as commercial bacterial agents for the production of fermented dairy products. According to the literature data, the absence of acquired antimicrobial resistance has become an important criterion for assessing the safety of lactobacilli, which are used as starting cultures for the production of fermented dairy products or probiotics. It has been established that it is obligatory to study the antibiotic resistance gene in addition to clinical and laboratory methods of studying the antibiotic resistance of LAB. To minimize the formation of antibiotic-resistant bacteria in food products of plant and animal origin it is possible by careful monitoring of residues of antibiotics in raw materials and finished products. This will prevent the entry of antibiotic resistant strains into the natural cycle.


Ammor, M.S., Flórez, A.B., van Hoek, A.H.A.M., de los Reyes-Gavilán, C.G., Aarts, H.J.M., Margolles, A., & Mayo, B. (2008). Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. Journal of Molecular Microbiology and Biotechnology. 14, 6–15. doi: 10.1159/000106077.

Mathur, S., & Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria – a review. International Journal of Food Microbiology. 105(3), 281–295. doi: 10.1016/j.ijfoodmicro.2005.03.008.

Jacobsen, L., Wilcks, A., Hammer, K., Huys, G., Gevers, D., & Andersen, S.R. (2007). Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiology Ecology. 59(1), 158–166. doi: 10.1111/j.1574-6941.2006.00212.x

Nawaz, M., Wang, J., Zhou, A., Ma, C., Wu, X., Moore, J.E., Millar B.C., & Xu, J. (2011). Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Current Microbiology. 62(3), 1081–1089. doi: 10.1007/s00284-010-9856-2.

Mayrhofer, S., Domig, K.J., Mair, C., Zitz, U., Huys, G., & Kneifel, W. (2008). Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Applied and Environmental Microbiology. 74(12), 3745–3748. doi: 10.1128/AEM.02849-07.

FAO-WHO. (2002). Joint FAO/WHO working group report on drafting guidelines for the evaluation of probiotics in food. Food and Agricultural Organization of the United Nations, Rome, Italy, and World Health Organization, Geneva, Switzerland.

Monahan, J.C. (2011). The FDA and generally recognized as safe (GRAS) substances. Nova Science Publishers, Hauppauge, NY.

Sanchez, B., Delgado, S., Blanco-Mнguez, A., Lourenzo, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research. 61(1). doi: 10.1002/ mnfr .201600240.

Lukačišinov, M., & Bollenbach, T. (2017). Toward a quantitative understanding of antibiotic resistance evolution. Curr. Opin. Biotechnol. 46, 90–97. doi: 10.1016/j.copbio.2017.02.013.

CLSI. (2006). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; proposed guideline. M45-P. 25th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

Botina, S.H. (2008). Vidovaja identifikacija i pasportizacija molochnokislyh bakterij metodami molekuljarno-geneticheskogo tipirovanija. Molochnaja promyshlennost'. 3, 52–54 (in Russian).

Govender, M., Choonara, Y.E., van Vuuren, S., Kumar, P., Du, Toit, L.C., Erlwanger, K., & Pillay, V. (2016). A dual-biotic system for the concurrent delivery of antibiotics and probiotics: in vitro, ex vivo, in vivo and in silico evaluation and correlation. Pharm. Res. 33(12), 3057–3071. doi: 10.1007/s11095-016-2030-1.

European Food Safety Authority (EFSA). (2012). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10:2740.

Butsenko, I.M., Penchuk, Yu.M., & Pyroh, T.P. (2010). Tekhnolohii mikrobnoho syntezu likarskykh zasobiv. Navch. posib., NUKhT (in Ukrainian).

Borovkov, M.F., Frolov, V.P., & Serko, S.A. (2010). Veterynarno-sanytarnaia эkspertyza s osnovamy tekhnolohyy y standartyzatsyy produktov zhyvotnovodstva. Uchebnyk pod red. prof. M.F. Borovkova. 3-e yzd., dop. y pererab. Sankt-Peterburh, Lan (in Russian).

Langford, F.M., Weary, D.M., & Fisher, L. (2003). Antibiotic Resistance in Gut Bacteria from Dairy Calves: A Dose Response to the Level of Antibiotics Fed in Milk. Journal of Dairy Science. 86(12), 3963–3966. doi: 10.3168/jds.S0022-0302(03)74006-5

Fedorenko, V.O., Basiliia, L.I., Zavorotna, S.A., Holets, L.M., & Kyrychenko, N.V. (2001). Henetychnyi kontrol biosyntezu antybiotykiv ta stiikosti do antybiotykiv u aktynomitsetiv. K.: Lohos (in Ukrainian).

Chaharovskyy, V.P., & Zholkevskaya, Y.H. (2003). Byotekhnolohyya poluchenyya byoyohurtov y byokefyra, yzuchenye ykh vlyyanyya na zdorov'e cheloveka. Mikrobiolohichnyy zhurnal. 65(6), 67–73 (in Ukrainian).

Slyvka, I.M., & Tsisaryk, O.J. (2013). Vydilennya molochnokyslyx bakterij iz ovechogo syru, vygotovlenogo v Bukovyns`komu regioni ta yix identyfikaciya. Naukovyj visnyk LNUVM ta BT imeni S.Z. Gzhycz`kogo. 15, 4(57), 116–121 (in Ukrainian).

Slyvka, I.M., & Tsisaryk, O.J. (2015). Identyfikaciya molochnokyslyx bakterij iz zastosuvannyam kompleksu molekulyarno-genetychnyx metodiv. Naukovyj visnyk LNUVM ta BT imeni S.Z. Gzhyczkogo. 17, 1(61), 213–222 (in Ukrainian).

Busani, L., Del Grosso, M., Paladini, C., & Gtazians, C. (2004). Antimicrobial susceptibility of vancomycin-susceptible and –resistant enterococci isolated in Italy from raw meat products, farm animals, and human infections. IInternational Journal of Food Microbiology. 97(1), 17–22. doi: 10.1016/j.ijfoodmicro.2004.04.008.

Kihel, N.F. (2003). Tekhnolohii bakterialnykh preparativ dlia funktsionalnykh produktiv i biolohichno aktyvnykh dobavok. Avtoreferat dysertatsii na zdobuttia naukovoho stupenia doktora tekhnichnykh nauk, Kyiv (in Ukrainian).

Slyvka, I.M. (2015). Biotehnologija stvorennja bakterial'nogo preparatu dlja vyrobnyctva brynzy. Dysertacija na zdobuttja naukovogo stupenja kandydata sil's'kogospodars'kyh nauk, Bila Cerkva (in Ukrainian).

Slyvka, I.M., & Cisaryk, O.J. (2015). Deklaracijnyj patent Ukrai'ny na korysnu model' № u 2015 01858. Konsorcium mikroorganizmiv Lactobacillus plantarum, Leuconostoc mesenteroides ssp. mesenteroides, Lactococcus lactis ssp. lactis, Lactococcus garvieae, Enterococcus faecium dlja vyrobnyctva syru brynza: zajavnyk i vlasnyk patentu L'vivs'kyj nacional'nyj universytet veterynarnoi' medycyny ta biotehnologij imeni S.Z Gzhyc'kogo. Zajavl. 02.03.2015 r., pozytyvne rishennja 03.06.2015 (in Ukrainian).

Tsisaryk, O., Slyvka, І., & Musiy, L. (2017). Screening of technological properties of natural strains of lactic acid bacteria. Scientific Messenger LNUVMB. 19(80), 88–92. doi: 10.15421/nvlvet8018.

Bondarenko, V.M. (2004). Probiotiki i mehanizmy ih lechebnogo. Jeksperim. klin. gastroenterol. 3, 83–87 (in Ukrainian)

Bergogne-Berezin, E. (1995). Impact ecologique de l'antibiotherapie. Place des microorganismes de substitution dansle controle des diarrhees et colites associees aux antibiotiques. 24, 145–156.

Elmer, G.W., Mc Farland, L.W., & Surawicz, C.M. (1999). Biotherapeutic agents and infection diseases. New York: Human Press.

Gevers, D., Huys, G., & Swings, J. (2003). In vitro conjugal transfer tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letters. 225(1), 125–130. doi: 10.1016/S0378-1097(03)00505-6.

Centers for Disease Control. (1995). CDC issues recommendation for preventing spread of vancomycin resistance. Am. J. Health. Pharm. 52, 1272–1274.

Murray, B.E. (1995). Editorial responce: What can we do about vancomycin resistant enterococci? Clinical Infectious Diseases. 20(5), 1134–1136.

Courvalin, P., & Trieu Cuot, P. (2001). Minimizing potential resistance: Molecular view. Clinical Infectious Diseases. 33, 138–146. doi: 10.1086/321840.
How to Cite
Slyvka, I., Tsisaryk, O., & Musiy, L. (2018). Antibiotic resistance of lactis acid bacteria and the risk of its transmission with fermented dairy products. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 20(87), 78-84.