Technological stress in poultry


Keywords: poultry, technological stress, feed additive, adaptation.

Abstract

The article presents the data of domestic and foreign literature on the changes that occur in the bird of industrial cultivation for the development of technological stress. Stress factors are outlined, among which the most significant for the bird organism is the high density of content, the microclimate of the production premises, the conditions of content and composition of the diet, vaccination, transportation. Investigators include high excitability, fear, aggressiveness, anxiety, fatigue, loss of appetite, and disturbance of behavioral reactions of young chickens, quail, ducks, and industrial growth to inadequate changes in external and internal environmental factors. Common signs of stress in the mature chickens, quails, ducks during the development of technological stress set premature mass maturation, decrease and complete cessation of oviposition, reproductive function, weakening of muscle tone. In stress, the activity of all systems of an organism, directed on self-defense and adaptation to new conditions of existence, strains. A prerequisite for the development of stress-reaction is to strengthen the function of the glands of the inner secretion and especially the hypothalamus system – the anterior part of the pituitary gland – the adrenal cortex. It has been established that in the process of adaptation of the organism to the action of adverse factors the concentration of blood sugar increases due to the cleavage of the glycogen in the liver, the mobilization of lipids from the fat depots increases, the intensity of metabolic processes in the adipose tissue increases, and this ensures an increase in the concentration of fatty acids in the blood. The negative influence of stress factors on resistance, immunological reactivity, microbiocenosis state, functioning of the digestive system, preservation and productivity of the bird population are shown. These states are directly related to the activity of the hormonal and autonomic nervous systems and are determined by nonspecific protective factors of the organism. Different ways of correction of disturbed homeostasis are shown. The effectiveness of the use of probiotics, symbiotics, humic substances in the poultry diet is given to prevent the development of negative stress phenomena in their body. It is proved that the management of the processes of development of adaptive ability of the bird organism is one of the key aspects of the development of the corresponding complex of technological measures of their growing and feeding that is conducive to the increase of economic efficiency. The search for methods for the prevention of stress in poultry farming is aimed at eliminating the etiological factors of stress, the removal of birds resistant to stress, the use in feeding substances that reduce the response to the action of adverse stimuli or increase resistance to the organism. Affecting the formation of adaptive reactions of the bird organism long before the stress, as well as in the development of the adaptive syndrome, it is possible to implement its prophylaxis, that is, to ensure the consistent functioning of all physiological systems and the activation of protective forces through the use of biologically active harmless feed additives in diets.

Downloads

Download data is not yet available.

References

Ibatullin, I.I., & Otchenashko, VV. (2012). Vyroshchuvannia perepeliv za zghoduvannia kombikormiv z riznymy rivniamy kaltsiiu ta fosforu. Visnyk ahrarnoi nauky, 1, 48–51 (in Ukrainian).

Surai, P., & Fotina, T. (2012). Stresy u ptakhivnytstvi: Molekuliarni mekhanizmy. Tvarynytstvo ta veterynariia, 207, 9/12, 2–4 (in Ukrainian).

Sedyh, T.A. (2012). Produktivnost i estestvennaja rezistentnost utok pri intensivnoj tehnologii vyrashhivanija. Agrarnyj vestnik Urala, 8(100), 33–37 (in Russian).

Atchley, D.S., Foster, J.A., & Bavis, R.W. (2008). Thermoregulatory and metabolic responses of Japanese quail to hypoxia. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 151(4), 641–650. doi: 10.1016/j.cbpa.2008.08.002.

Scanes, C.G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9), 2208–2215. doi: 10.3382/ps/pew137.

Stojanowskij, W., Krog, A., & Kolomijets, I. (2018). Pathophysiological mechanisms of adaptation of the ducks organism for action of transport stress. Międzynarodowa konferencja naukowa “Lwowskо-wrocławska szkoła weterynaryjnа”, 255–261.

Lara, L.J., & Rostagno, M.H. (2013). Impact of Heat Stress on Poultry Production. Animals (Basel), 3(2), 356–369. doi: 10.3390/ani3020356.

Selje, G. (1979). Stress bez distressa. Moskva (in Russian).

Farag, M.R., & Alagawany, M. (2018). Physiological alterations of poultry to the high environmental temperature. J Therm Biol, 101–106. doi: 10.1016/j.jtherbio.2018.07.012.

Chen, N.N., Liu, B., Xiong, P.W., Guo, Y., He, J.N., Hou C.C., Ma, L.X., & Yu, D.Y. (2018). Safety evaluation of zinc methionine in laying hens: Effects on laying performance, clinical blood parameters, organ development, and histopathology. Poultry Science, 97(4), 1120–1126. doi: 10.3382/ps/pex400.

Stoianovskyi, V.H., Kolomiiets, I.A., Harmata, L.S., & Kamratska, O.I. (2018). Zminy morfofunktsionalnoho stanu orhaniv endokrynnoi ta imunnoi system perepeliv promyslovoho vyroshchuvannia za dii stresu. Fiziolohichnyi zhurnal, 64(1), 25–33. doi: 10.15407/fz64.01.025 (in Ukrainian).

Kolomіес, І.A. (2013). Doslіdzhennja funkcіonuvannja T- і V-lanki іmunіtetu brojlerіv na tlі vakcinacіі pri zastosuvannі simbіotika “Prajmіks-Bіonorm P” ta rozchinu visokochistogo natrіju gіpohloritu. Vіsnik Dnіpropetrovskogo derzhavnogo agrarnogo unіversitetu, 1, 171–172 (in Ukrainian).

Marangon, S., Cecchinato, M., & Capua, I. (2008). Use of vaccination in avian influenza control and eradication. Zoonoses Public Health, 55(1), 65–72. doi: 10.1111/j.1863-2378.2007.01086.

Mohammed, A.A., Jacobs, J.A., Murugesan, G.R., & Cheng, H.W. (2018). Effect of dietary synbiotic supplement on behavioral patterns and growth performance of broiler chickens reared under heat stress. Poultry Science, 97(4), 1101–1108. doi: 10.3382/ps/pex421.

Olubodun, J., Zulkifli, I., Hair-Bejo, M., Kasim, A., & Soleimani, A.F. (2015). Physiological response of glutamine and glutamic acid supplemented broiler chickens to heat stress. European Poultry Science, 79, 1–12. doi: 10.1399/eps.2015.87.

Kononenko, V.Ia., Kalinichenko, O.V., Myshunina, T.M., & Pilkevych, L.I. (2002). Neirokhimichni osoblyvosti rozvytku stres – reaktsii u shchuriv za umov zmin funktsionalnoho stanu hipotalamo – hipofizarno – adrenokortykoidnoi systemy. Zhurnal AMN Ukrainy, 164–171 (in Ukrainian).

Infante, M., Armani, A., Mammi, C., Fabbri, A., & Caprio, M. (2017). Impact of adrenal steroids on regulation of adipose tissue. Comprehensive Physiology, 7(4), 1425–1447. doi: 10.1002/cphy.c160037.

Voronina, O.K. (2003). Nadnirkovі zalozi ptahіv: citofіzіologіja ta uchast u stres-reakcіі. Vіsnik Kiіvskogo unіversitetu, Bіologіja, 39(40), 97–100 (in Ukrainian).

Gavreliuk, S.V., & Chykina, I.V. (2017). Еffect of chronic immobilization stress on the development of endothelial dysfunction in rats. Fiziol. Zh., 63(2), 56–64. doi: 10.15407/fz63.02.056.

Martinez, B., & Ortiz, R.M. (2017). Thyroid hormone regulation and insulin resistance: Insights from animals naturally adapted to fasting. Physiology, 32(2), 141–151. doi: 10.1152/physiol.00018.2016.

Epihova, O.G. (2012). Issledovanie gistologicheskih izmenenij pochek brojlerov krossa “Smena-7” v uslovijah kletochnogo soderzhanija. Nauchnye trudy filiala Nacionalnogo universiteta bioresursov i prirodopolzovanija Ukrainy “Krymskij gosudarstvennyj universitet” veterinarnye nauki, 53–58 (in Russian).

Hunchak, A.V., Ratych, I.B., & Fedyk, Yu.Ya. (2013). Morfo-histolohichna struktura shchytopodibnoi zalozy i pechinky perepilok ta kurei-nesuchok za riznoho rivnia yodu u yikh ratsionakh. Biolohiia tvaryn, 15(1), 22–26 (in Ukrainian).

Hunchak, A.V., Ratych, I.B., Gutyj, B.V., & Paskevych, H.A. (2016). Metabolic effects of iodine in poultry for its deficiency or excess in the diet. Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj, 18, 2(67), 70–76. doi: 10.15421/nvlvet6716.

Medvid, S.M., Hunchak, A.V., Gutyj, B.V., & Ratych, I.B. (2017). Prospects of rational security chicken-broilers with mineral substances. Scientific Messenger LNUVMB, 19(79), 127–134. doi: 10.15421/nvlvet7925.

Pasichna, Yu.Ya, & Stoianovskyi, V.H. (2008). Dynamika zmin aktyvnosti hidrolitychnykh fermentiv u tonkii kyshtsi kurei u protsesi adaptatsii do kormovykh chynnykiv. Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn i Derzhavnoho naukovo-doslidnoho kontrolnoho instytutu vetpreparativ ta kormovykh dobavok, 9(1, 2), 53–57 (in Ukrainian).

Halushchak, L.I. (2008). Aktyvnist hidrolaz tkanyn travnoho traktu perepilok pry dii riznoho skladu kombikormu. Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn, 9(3), 25–28 (in Ukrainian).

Garmata, L.S. (2017). Kіlkіsnij sklad mіkroflori kishechnika perepelіv porodi “Faraon” za dіі stresu pri vkljuchennі v racіon BAKD “Prajmіks Bіonorm–K”. Problemi zooіnzhenerіі ta veterinarnoі medicini: Zbіrnik naukovih prac Harkіvskoі derzhavnoі zooveterinarnoі akademіі, 34(2), 242–245 (in Ukrainian).

Ostrovska, M.Yu., Hunchak, A.V., & Stepchenko, L.M. (2013). Aktyvnist hidrolitychnykh fermentiv ta stan mikrobotsenozu kyshechnyku v orhanizmi molodniaku kurei-nesuchok za dii “Humilidu”. Biolohiia tvaryn, 15(3), 95–104 (in Ukrainian).

Pavlova, I. (2015). Effect of probiotics on doxycycline disposition in gastro-intestinal tract of poultry. Bulgarian Journal of Veterinary Medicine, 18(3), 248–257. doi: 10.15547/bjvm.908.

Gutyj, B., Leskiv, K., Shcherbatyy, A., Pritsak, V., Fedorovych, V., Fedorovych, O., Rusyn, V., & Kolomiiets, I. (2017). The influence of Metisevit on biochemical and morphological indicators of blood of piglets under nitrate loading. Regul. Mech. Biosyst., 8(3), 427–432. doi: 10.15421/021766.

Nischemenko, N.P., Trokoz, V.O., Poroshynska, O.A., Stovbecka, L.S., & Еmelynenko, A.A. (2017). Hematological and reproductive parameters of the quails under inflluence of amino acids and vitamin e complexes. Fiziol. Zh., 63(5), 34–40. doi: 10.15407/fz63.05.034.

Stoianovskyi, V.H., Kroh, A.O., & Kolomiiets, I.A. (2018). Adaptatsiia stanu nespetsyfichnoi rezystentnosti orhanizmu kachok v umovakh stresu pry vkliuchenni v ratsion probiotychnykh dobavok. Naukovyi visnyk LNUVM ta BT imeni S.Z. Hzhytskoho. Seriia “Veterynarni nauky”, 20(87), 32–38. doi: 10.15421/nvlvet8702 (in Ukrainian).

Maslianko, R.P. (1999). Osnovy imunobiolohii. Lviv: Vertykal (in Ukrainian).

Broshkov, M.M. (2016). Imunnyi status orhanizmu sobak zalezhno vid fiziolohichnykh osoblyvostei i yoho korektsiia. DVM [thesis]. Kyiv (in Ukrainian).

Azad, M.A., Kikusato, M., Maekawa, T., Shirakawa, H., & Toyomizu, M. (2010). Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 155(3), 401–406. doi: 10.1016/j.cbpa.2009.12.011.

Huff, G.R., Huff, W.E., Wesley, I.V., Anthony, N.B., & Satterlee, D.G. (2013). Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge. Poultry Science, 92(3), 603–611. doi: 10.3382/ps.2012-02518.

Kryshtalska, M., Hunchak, V., & Gutyj, B. (2017). Influence of the drug «Trifuzol» on the functional state of the liver in chickens for eymeriozic invasion. Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj, 19(77), 76–79. doi: 10.15421/nvlvet7718.

Apatenko, V.M. (1994). Veterynarna imunolohiia ta imunopatolohiia. Kyiv: Urozhai (in Ukrainian).

Stoianovskyi, V.H., & Kolomiiets, I.A. (2011). Probiotyky ta imunna systema shlunkovo-kyshkovoho traktu ptytsi. Suchasne ptakhivnytstvo, 4(101), 21–25 (in Ukrainian).

Shaddel-Tili, A., Eshratkhan, B, Kouzehgari, H., & Ghasemi-Sadabadi, M. (2017). The effect of different levels of propolis in diets on performance, gastrointestinal morphology and some blood parameters in broiler chickens. Bulgarian Journal of Veterinary Medicine, 20(3), 215–224. doi: 10.15547/bjvm.986.

Kapustian, A., Cherno, N., Stankevich, G., Kolomiіets, I., Matsjuk, O., Musiy, L., & Slyvka, I. (2018). Determination of the enzyme destruction rational mode of biomass autolysate of lactic acid bacteria. Eastern-European Journal of Enterprise Technologies, 1/11 (91), 63–68. doi: 10.15587/1729-4061.2018.120877.

Kapustian, A., Cherno, N., & Kolomiіets, I. (2018). Obtaining and characteristic of muropeptides of probiotic cultures cell walls. Food Science and Technology, 12(1), 10–17. doi: 10.15673/fst.v12i1.885.

Stepchenko, L.M., Losieva, Ye.O., & Skoryk, M.V. (2010). Fiziolohichni aspekty podovzhennia produktyvnosti kurei-nesuchok za vplyvu hidrohumatu. Fiziolohichnyi zhurnal, 56(3), 305–306 (in Ukrainian).

Abstract views: 115
PDF Downloads: 122
Published
2018-11-13
How to Cite
Shevchuk, M., Stoyanovskyy, V., & Kolomiiets, I. (2018). Technological stress in poultry. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 20(88), 63-68. https://doi.org/10.32718/nvlvet8811