Glutathione peroxidase of blood of dogs and cats with mammary tumors


Keywords: glutathione, cancer, blood plasma, erythrocytes

Abstract

For timely diagnostics and successful treatment of mammary tumors in human and animals a necessary search of compounds that can be the biomarkers of this disease is needed. The aim of our work was to measure the activity of glutathione peroxidase (GPx) in blood plasma and erythrocytes of dogs and cats with mammary tumors and healthy animals for establishment of intercommunication between enzyme's activity and tumors. For researches took away blood at three groups of animals: 1) four healthy females of dogs (Canis familiaris) – the German Shepherd dogs by age 3, 6, 7 and 7; 2) four females of dogs with mammary tumors – the Russian Spaniel dog by age 8, Boxer dog by age 9 and the German Shepherd crossbred dogs by age 11 and 12; 3) four females of cats (Felis catus) with mammary tumors – crossbred cats by age 6, 8 and 10 and the Persian crossbred cat by age 13. Activity of GPx was determined by decrease of reduced glutathione in a presence of hydrogen peroxide for time unit with a count on the gramme of protein in blood plasma, or haemoglobin in erythrocytes. In the sick dogs’ erythrocytes the activity of GPx presents 30.45 ± 3.08 mmol GSH/min×g haemoglobin and it is more than for the healthy animals of 27.84 ± 5.24 mmol GSH/min×g haemoglobin, these differences aren't statistically reliable however. This index is the highest for the sick German Shepherd crossbred dog aged 11 and presents 38.5 mmol GSH/min×g haemoglobin. In sick dogs’ activity of GPx in blood plasma is 7.45 ± 1.60 mmol GSH/min×g protein and it is statistically reliable less than the healthy animals of 12.77 ± 1.18 mmol GSH/min×g protein. This index is the lowest for the the 12 years old sick German Shepherd crossbred dog and it is 3.41 mmol GSH/min×g protein. In sick cats activity of GPx in erythrocytes is 41.57 ± 4.10 mmol GSH/min×g haemoglobin, and the greatest it is in the sick crossbred cat age 10 – 52.52 mmol GSH/min×g haemoglobin. The activity of the enzyme in blood plasma of sick cats is 11.58 ± 1.99 mmol GSH/min×g protein and this index is similar to the healthy dogs. Activity of GPx of the erythrocytes of dogs and blood plasma of cats with mammary tumors did not differ from healthy dogs. The activity of GPx of sick dogs only in blood plasma is less than in healthy ones. It can be the consequence of this “exhaustion” of the enzyme and its involving in the process of neutralizing of active forms of reactive oxygen species in those tissues of organism where oxidizing stress develops. Next to the study of expression on the future it is necessary to pay attention to the study of polymorphism of GPx.

Downloads

Download data is not yet available.

References

Beutler, E., Duron, O., & Kelly, B.M. (1963). Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine, 61, 882–888. PMID:13967893. https://www.ncbi.nlm.nih.gov/ pubmed/13967893.

Crnogaj, M., Cerón, J.J., Šmit, I., Kiš, I., Gotić, J., Brkljačić, M. et al. (2017). Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet. Res., 13(1), 114–122. doi: 10.1186/s12917-017-1020-9.

Drabkin, D.L., & Austin, J.H., (1935). Spectrophotometric studies. II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J. Biol. Chem., 112, 51–65. http://www.jbc.org/cgi/framedreprint/112/1/51.

Feng, X.J., Hu, X.Y, Zhang, S., Li, J.N., & Fan, H.G. (2015). Effects of the dexmedetomidine, midazolam, butorphanol, and atropine combination on plasma oxidative status and cardiorespiratory parameters in raccoon dogs (Nyctereutes procyonoides). Veterinarni Medicina, 60(8), 450–455. doi: 10.17221/8420-VETMED.

Gornall, A.G., Bardawill, C.J., & David, M.M (1949). De-termination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177(2), 751–766. PMID:18110453. http://www.jbc.org/content/ 177/2/751.short.

Gultekin, M., & Voyvoda, H. (2017). Evaluation of oxi-dative status in dogs with anemia. Med. Weter., 73(8), 496–499. doi: 10.21521/mw.5754.

Jablonska, E., Gromadzinska, J., Peplonska, B., Fendler, W., Reszka, E., Krol, M.B. et al. (2015). Lipid peroxi-dation and glutathione peroxidase activity relation-ship in breast cancer depends on functional polymor-phism of GPX1. BMC Cancer., 15, 657–668. doi: 10.1186/s12885-015-1680-4.

Kendall, A., Woolcock, A., Brooks, A., & Moore, G.E. (2017). Glutathione peroxidase activity, plasma total antioxidant capacity, and urinary F2- isoprostanes as markers of oxidative stress in anemic dogs. J Vet In-tern Med., 31(6), 1700–1707. doi: 10.1111/jvim.14847.

Król, M.B., Galicki, M., Grešner, P., Wieczorek, E., Jabłońska, E., Reszka, E. et al. (2018). The ESR1 and GPX1 gene expression level in human malignant and non-malignant breast tissues. Acta Biochim Pol., 65(1), 51–57. doi: 10.18388/abp.2016_1425.

Kumaraguruparan, R., Balachandran, C., Manohar, B.M., & Nagini, S. (2005). Altered oxidant-antioxidant profile in canine mammary tumours. Veterinary Re-search Communications, 29(4), 287–296. doi: 10.1023/B:VERC.0000048499.38049.4b.

Leonel, C., Gelaleti, G.B., Jardim, B.V., Moschetta, M.G., Regiani, V.R., Oliveira, J.G. & Zuccari, D.A.P.C. (2014). Expression of glutathione, glutathione peroxi-dase and glutathione S-transferase pi in canine mammary tumors. BMC Veterinary Research, 10, 49–58. doi: 10.1186/1746-6148-10-49.

Lopes-Neto, B.E., Santos, G.J.L., Lima, A.L., Barbosa, M.C., Santos, T.E.J., & Uchoa, D.C. et al. (2016). Cat-alase and glutathione peroxidase in dogs naturally in-fected by Leishman iainfantum. Acta Scientiae Veter-inariae, 44, 1360–1365. http://www.ufrgs.br/actavet/ 44/PUB%201360.pdf.

Matés, J.M., & Sánchez-Jiménez, F.M. (2000). Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol., 32(2), 157–170. PMID:10687951. https://www.ncbi.nlm.nih.gov/ pubmed/10687951.

Pasquini, A., Gavazza, A., Biagi, G., & Lubas, G. (2015). Oxidative stress in lymphoma: Similarities and differences between dog and human. Comp Clin Pathol., 24, 69–73. doi: 10.1007/s00580-013-1856-8.

Pirie, A. (1965). Glutathione peroxidase in lens and a source of hydrogen peroxide in aqueous humour. Bio-chem J., 96(1), 244–253. PMID:14343138 https://www.ncbi.nlm.nih.gov/pubmed/14343138.

Plavec, T., Nemec-Steve, A., Butinar, J., Tozon, N., Prezelj, M., Kandel, B. & Kessler, M. (2008). Antioxi-dant status in canine cancer patients. Acta Veterinaria Beograd, 58(2–3), 275–286. http://www.actaveterinaria. rs/volume/issue/8/41/331.

Ramírez-Expósito, M.J., Urbano-Polo, N., Dueñas, B., Navarro-Cecilia, J., Ramírez-Tortosa, C., Martín-Salvago, M.D., & Martínez-Martos, J.M. (2017). Re-dox status in the sentinel lymph node of women with breast cancer. Ups J Med Sci., 122(4), 207–216. doi: 10.1080/03009734.2017.1403522.

Sadati Zarrini, A., Moslemi, D., Parsian, H., Vessal, M., Mosapour, A., & Shirkhani Kelagari, Z. (2016). The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer. Caspian J. Intern. Med., 7(1), 31–36. PMID:26958330 https://www.ncbi.nlm.nih.gov/pubmed/26958330.

Sagols, E., & Priymenko, N. (2011). Oxidative stress in dog with heart failure: the role of dietary fatty acids and antioxidants. Vet Med Int., 2011(6), 180206–180-210. doi: 10.4061/2011/180206.

Szczubiał, M., Kankofer, M., Łopuszyński, W., Dabrowski, R., & Lipko, J. (2004). Oxidative stress pa-rameters in bitches with mammary gland tumours. J Vet Med A, 51(7–8), 336–340. doi: 10.1111/j.1439-0442.2004.00647.x.

Todd, S.E., Thomas, D.G., & Hendriks, W.H. (2011). Se-lenium balance in the adult cat in relation to intake of dietary sodium selenite and organically bound seleni-um. J Anim Physiol Anim Nutr., 96(1), 148–158. doi: 10.1111/j.1439- 0396.2011.01132.x.

Tomsič, K., Nemec, S.A., Nemec, A., Domanjko, P.A.,Vovk, T., & Seliškar, A. (2018). Influence of sevoflurane or propofolanaesthesia on oxidative stress parameters in dogs with early-stage myxoma-tous mitral valve degeneration. A preliminary study. ActaVeterinaria-Beograd, 68(1), 32–42. doi: 10.2478/acve-2018-0003.

Vajdovich, P., Kriska, T., Mézes, M., Szabó, P.R., Balogh, N., Bánfi, A. et al. (2005). Redox status of dogs with non-hodgkinlymphomas. An ESR study. Can-cer Lett., 224(2), 339–346. doi: 10.1016/j.canlet.2004.11.037.

Van Zelst, M., Hesta, M., Gray, K., Staunton, R., Du Laing, G., & Janssens, G.P. (2016). Biomarkers of se-lenium status in dogs. BMC Veterinary Research, 12, 15–26. doi: 10.1186/s12917-016-0639-2.

Verk, B., Nemec Svete, A., Salobir, J., Rezar, V., Doman-jko Petrič, A. (2017). Markers of oxidative stress in dogs with heart failure. Journal of Veterinary Diagnos-tic Investigation, 29(5), 636–644. doi: 10.1177/1040638717711995.

Wang, C., Yu, J., Wang, H., Zhang, J., & Wu, N. (2014). Lipid peroxidation and altered anti-oxidant status in breast adenocarcinoma patients. Drug Res (Stuttg), 64(12), 690–692. doi: 10.1055/s-0034-1372580.

Winter, J.L., Barber, L.G., Freeman, L., Griessmayr, P.C., Milbury, P.E., & Blumberg, J.B. (2009). Antioxidant status and biomarkers of oxidative stress in dogs with lymphoma. J Vet Intern Med, 23(2), 311–316. doi: 10.1111/j.1939-1676.2009.0273.x.

Abstract views: 13
PDF Downloads: 8
Published
2018-12-10
How to Cite
Fedets, O., Kurlyak, I., & Zayats, O. (2018). Glutathione peroxidase of blood of dogs and cats with mammary tumors. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 20(92), 213-217. https://doi.org/10.32718/nvlvet9244