Placental barrier permeability to Cadmium and Plumbum during cow pregnancy and at the foaling time of mares


Keywords: blood, umbilical cord, fetus, liver, amniotic fluid

Abstract

The paper explores placental barrier permeability to Cadmium (Cd) and Plumbum (Pb) in cows in the dynamics of their pregnancy in the direction ‘maternal blood (MB) → maternal placental compartment (MPC) → fetal placental compartment (FPC) → the umbilical cord (UC) → fetal liver (FL) → amniotic (AMF) and allantoic (ALF) fluid’ and during parturition in relatively clean and contaminated with radioactive nuclides environments, with the injection of tissue medication fetoplacentat in the dry off time, and feeding with a mixture of saponite and sulphur supplementation in rations; in mares at the foaling time in the direction ‘maternal blood (MBm) → the fetal placental compartment of a mare (FPCm) → the umbilical cord of a foal (UCf ) → the foal’s liver (FLf) → amniotic (AMFf) and allantoic (ALFf) fluid → the allantoic membrane of a foal (ALMf)’. The age of the fetus during pregnancy was established by anatomical parameters, whereas Pb and Cd levels in blood and substrates were measured by the method of atomic absorption spectrophotometry (GOST 30170896). The MPC (caruncle) and FPC (cotyledon) were analyzed separately. Their barrier function in relation to Pb and Cd was performed at its full extent in 4–5 months of pregnancy and coincided with the highest concentration in the fetal liver. Wharton’s jelly absorbed Cd in 34 months of gestation. With the approach of calving, Pb and Cd levels decreased in the amniotic fluid and increased in the allantoic fluid. Under the influence of fetoplacentat in MPC and FPC Cd accumulated better in AMF and ALF, whereas its levels were lower in the cortical mucus of the cervix. Pb deposited in equal concentrations in MPC of all the cows (0.46 ± 0.18 μg/kg in the contaminated environment and 0.47 ± 0.17 μg/kg in the relatively clean environment). In the relatively clean environment its levels in ALF were lower in 8 times (0.62 ± 0.16 μg/kg and 0.08 ± 0.04 μg/kg) and 26 times lower in AMF (0.52 ± 0.07 μg/kg and 0.02 ± 0.002 μg/kg), whereas Pb concentration in the cortical mucus of the cervix was 17 times lower (0.06 ± 0.03μg/kg) than that in the contaminated environment, (1.01 ± 0.28 μg/kg). Pb transited from MPC (0.46 ± 0.18 μg/kg) to FPC (0.51 ± 0.19 μg/kg), deposited in the internal environment of the uterus wherefrom it was absorbed by the cortical mucus of the cervix (1.01 ± 0.28 μg/kg). While transiting through the fetal body Pb accumulated in amniotic (0.52 ± 0.07 μg/kg) and allantoic fluid (0.62 ± 0.16 μg/kg). Mineral supplement in rations led to a weakened barrier function of MPC (0.23 ± 0.14 μg/kg), a two-fold increase of Pb in FPC (0.47 ± 0.11 μg/kg), whereas in the allantoic (0.16 ± 0.05 μg/kg) and amniotic (0.38 ± 0.10 μg/kg) fluid Pb concentration was lower when compared to the control group (0.62 ± 0.16 μg/kg; Р < 0.05 і 0.52 ± 0.07 μg/kg; Р < 0.05, respectively). Pb deposited in the cortical mucus of the cervix (2.47 ± 0.26 μg/kg; Р < 0.001). With the injection of fetoplacentat the barrier function of MPC became weaker (0.06 ± 0.01 μg/kg) than that of the control group (0.46 ± 0.17 μg/kg – 0.57 ± 0.18 μg/kg), though the decrease was exhibited less than in the cortical mucus of the cervix (0.67 ± 0.06 μg/kg). At the first stage of foaling Pb levels in mares’ blood were twice as high as Cd; in UCf Pb was not identified, Cd didn’t deposit but penetrated into the fetal liver where its levels were 11 times higher than that of Pb. Presence of Cd in allantoic fluid indicated its ability to excrete through the kidneys. Рb concentration in ALMf were 26 times higher than in the chorion and 3.7 times higher in FPCm than in ALFf. Pb levels in amniotic fluid were 1.3 times lower than in allantoic fluid and almost 4.2 times lower than in the fetal liver. Pb levels in AMF and ALF exceeded its concentration in the umbilical cord by 24.5 and 31 times respectively.

Downloads

Download data is not yet available.

References

Al-Salec, J. (2015). Interaction between cadmium (Cd), Selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthoropometric measures. Int. J. Hug. Environ. Health, 218(1), 66–90. doi: 10.1016/j.ijheh.2014.08.001.

Amaya, E., Gil, F., Freire, C. еt al. (2015). Placenta concentratons of heavy metals in a molher – hild Cohort. Environ. Res., 120, 63–70 doi: 10.1016/j.envres.2012.09.009.

Arshavskij, I.A. (1977). Placentarnyj bar'er. Fiziologija gistogematicheskih bar'erov. Medicina, 443–456 (in Russian).

Berglund, M., Larsson, K., Grandér, M., et.al. (2015). Exposure determinants of cadmium in European mothers and their children. Environ Res., 141, 69–76. doi: 10.1016/j.envres.2014.09.042.

Biasek, M., Micolic, A., Secovanik, A. et. al. (2014), Cadmium in placenta – a valualle biomarker exposure during pregnancy in biomedical research. Toxical. Environ. Health. 77(18), 1071–1074 doi: 10.1080/15287394.2014.915779.

Biletska, E.M., & Onul, N.M. (2014). Translokatsiia mikroelementiv u systemi “Maty-platsenta-plid” u shchuriv pry fiziolohichnii vahitnosti ta za umovy vplyvu svyntsiu. Medychni perspektyvy, 19(3), 4–9. http://nbuv.gov.ua/UJRN/Mp_2014_19_3_3 (in Ukrainian).

Bonglaisin, J.N., Chelea, M., Tsafack, T.J.J., Lantum, D.N., Djiele, P.N. et al. (2017). Assessment of Hae-moglobin Status and Transplacental Transport of Lead and Calcium During Geophagy. J Nutr Disorders Ther, 7, 204. doi: 10.4172/2161-0509.1000204.

Chen, Z., Myers, R., Wei, T., et. al. (2014). Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. Journal of Exposure Science and Environ-mental Epidemiology, 24(5), 537–544. doi: 10.1038/jes.2014.26.

Dashkevych, V.S. (1997). Vplyv malykh doz ionizui-uchoho vyprominiuvannia na systemu maty-platsenta-plid. PAH, 3, 89–92 (in Ukrainian).

Esteban-Vasallo, M.D., Aragonés, N., Pollan, M., López-Abente, G., & Perez-Gomez, B. (2012). Mercury, cadmium and lead levels in human placenta: a systematic review. Environ Health Perspect, 120, 1369–1377. doi: 10.1289/ehp.1204952.

Fedorova, M.V., Laricheva, I.P., & Milovanov, A.P. (1994). Korrekcija narushenij funkcii feto-placentarnoj sistemy u beremennyh v zone radioaktivnogo zagrjaznenija i ocenka effektivnosti lechebno-profilakticheskih meroprijatij. Ros. vestn. perinatologii i pediatrii, 39(4), 13–15 (in Russian).

Gel'fond, N.E., Starkova, E.V., & Gruf, V.V. (2014). Obmen makro- i mikrojelementov pri vvedenii svinca i v uslovijah sorbcionnoj korrekcii na fone beremennosti. Medicina i obrazovanie v Sibiri, 2 (in Russian).

Griffiths, S.K., & Campbell, J.P. (2015). Placental struc-ture, function and drug transfer. Continuing Edu-cation in Anaesthesia Critical Care & Pain, 15(2), 84–89. doi: 10.1093/bjaceaccp/mku013.

Hanson, M.L., Holaskova, I., Elliott, M., et. al. (2012). Prenatal cadmium exposure alters postnatal immune cell development and function. Toxicol Appl Pharmacol, 261(2), 196–203. doi: 10.1016/j.taap.2012.04.002.

Kippler, M., Hoque, A.M.W., & Raqib, R. (2010). Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett, 192(2), 162–168. doi: 10.1016/j.toxlet.2009.10.018.

Kippler, M., Tofail, F., Gardner, R., Rahman, A., Hamadani, J.D., Bottai, M., & Vahter M. (2012) Maternal cadmium exposure during pregnancy and size at birth: a prospective cohort study. Environ. Health Perspect., 120(2), 284–289 doi: 10.1289/ehp.1103711.

Krajneva, S.V. (2009). Migracija tjazhelyh metallov v sisteme “Pochva – korma – voda – stel'naja korova – molozivo” na territorii Juzhnogo Urala. Avtoref. diss. kand. biol. nauk: 03.00.16. Krasnojarsk (in Russian).

Lianos, M.N., & Ronco, A.M. (2009). Fetal growth restriction is related to placental levels of cadmium, lead and arsenic but not with antioxidant activities. Reproductive Toxicolog, 27(1), 88–92. doi: 10.1016/j.reprotox.2008.11.057.

Lin, C.M., Doyle, P., Wang, D., et. al. (2011). Does prenatal cadmium exposure effect fetal and child growth? Occupational and Environmental Medicine, 68(9), 641–646. doi: 10.1136/oem.2010.059758.

Mishchenko, V.P. (1996). Vmist tsynku, kadmiiu i rtuti v tsilnii krovi ta tkanynakh platsenty. PAH, 5–6, 75–77 (in Ukrainian).

Mokryk, O.M., & Zadorozhna, T.D. (2006). Morfolohichni osoblyvosti platsentarnoho barieru u zhinok, radiatsiino oprominenykh v pre- ta pubertatnomu periodakh. Visn. nauk. Doslidzhen, 2, 32–34 (in Ukrainian).

Muhacheva, S.V., & Bezel', V.S. (2015). Tjazhelye metally v sisteme mat' – placenta – plod u ryzhej polevki v uslovijah zagrjaznenija sredy vybrosami medeplavil'nogo kombinata. Jekologija, 6. 444–453. doi: 10.7868/S0367059715060128 (in Russian).

Muoth, C., Aengenheister, L., Kucki, M., Wick, P., & Buerki-Thurnherr, T. (2016). Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine, 11, 8. doi: 10.2217/nnm-2015-0012.

Ni, W., Huang, Y., Wang, X. et al. (2014). Associations of neonatal lead, cadmium, chromium and nickel co-exposure with DNA oxidative damage in an electronic waste recycling town. Science of the Total Environ-ment, 472, 354–362. doi: 10.1016/j.scitotenv.2013.11.032.

Olszowski, T., Baranowska-Bosiacka, I., et. al. (2016). Cadmium Concentration in Mother's Blood, Milk, and Newborn's Blood and Its Correlation with Fatty Acids, Anthropometric Characteristics, and Mother's Smok-ing Status. Biol Trace Elem Res, 174(1), 8–20. doi: 10.1007/s12011-016-0683-6.

Onul, N.M. (2013). Eksperymentalna otsinka embrio-toksychnosti svyntsiu yak faktoru malointensyvnoho vplyvu. Tavrych. medyko-biol. vestnik, 16, 1(61), 165–168 (in Ukrainian).

Ostrovskaja, S.S. (2016). Prenatal'noe vozdejstvie kadmija. Biomedical and biosocial anthropology, 27, 196–199 (in Russian).

Qin, J., Zhu, Y., Yin, F., Wang, H., Wang, L., & Yuan, J. (2018). Placental barrier-on-a-chip: Modeling placen-tal inflammatory responses to bacterial infection. ACS Biomaterials Science & Engineering, 4(9), 3356–3363. doi: 10.1021/acsbiomaterials.8b00653.

Röllin, H.B., Kootbodien, T., Channa, K., & Odland, J. (2015). Prenatal Exposure to Cadmium, Placental Permeability and Birth Outcomes in Coastal Popula-tions of South Africa. PLoS One, 10(11), e0142455. doi: 10.1371/journal.pone.0142455.

Rosin, Ja.A. (1977). Obshhaja harakteristika metodov issledovanija pronicaemosti. Fiziologija gisto-gematicheskih bar'erov. M.: Nauka, 42–60 (in Russian).

Sanders, A.P., Claus Henn, B., & Wright, R.O. (2015). Perinatal and childhood exposure to cadmium, man-ganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr. Envi-ron. Health Rep, 2(3), 284–294. doi: 10.1007/s40572-015-0058-8.

Shtern, L.S. (1927). Placentarnyj bar'er. Ginekologija i akusherstvo, 3(1), 17–19 (in Russian).

Sun, H., Chen, W., & Wang, D. (2014). The effects of prenatal exposure to low-level cadmium, lead and se-lenium on birth outcomes. Chemosphere, 108, 33–39. doi: 10.1016/j.chemosphere.2014.02.080.

Tekin, D, Kayaaltı, Z., Aliyev, V., & Söylemezoğlu, T. (2012). The effects of metallothionein 2A polymorphism on placental cadmium accumulation: Is metallothionein a modifiying factor in transfer of micronutrients to the fetus? Appl Toxicol, 32(4), 270–275. doi: 10.1002/jat.1661.

Thompson, J., & Bannigan, J. (2008). Cadmium: Toxic effects on the reproductive system and the embryo. Reprod. Toxicol., 25(3), 304–315. doi: 10.1016/j.reprotox.2008.02.001.

Ventskivskyi, B.M. (2010). Vmist vazhkykh metaliv u biolohichnykh substratakh systemy “maty-platsenta-plid” za syndromu zatrymky rozvytku plodu. Liky Ukrainy, 3(12), 38–41. http://www.health-medix.com/articles/liki_ukr_plus/2010-10-11/10BMVZRP.pdf (in Ukrainian).

Vilahur, N., Vahter, M., & Broberg, K. (2015).The Epi-genetic Effects of Prenatal Cadmium Exposure. Curr Environ Health Rep, 2(2), 195–203. doi: 10.1007/s40572-015-0049-9.

Walker, N., Filis, P., Soffientini, U., Bellingham, M., O'Shaughnessy, P.J., & Fowler, P.A. (2017). Placental Transporter Localization and Expression in the Hu-man: the importance of species, sex and gestational age differencest. Biology of Reproduction, 96(4), 733–743. doi: 10.1093/biolre/iox012.

Wang, Y., Chen, L., et. al. (2016). Effects of prenatal exposure to cadmium on neurodevelopment of infants in Shandong, China. Environ Pollut, 211, 67–73. doi: 10.1016/j.envpol.2015.12.038.

Xu, L., Ge, J., Huo, X., Zhang, Y., Lau, A.T.Y., & Xu, X. (2016). Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero. Sci Total Environ, 15(550), 1163–1170. doi: 10.1016/j.scitotenv.2015.11.084.

Xu, X., Chiung, Y.M., Lu, F., Qiu, S., Ji, M., & Huo, X. (2015). Associations of cadmium, bisphenol A and polychlorinated biphenyl coexposure in utero with placental gene expression and neonatal outcomes. Reproductive Toxicology, 52, 62–70. doi: 10.1016/j.reprotox.2015.02.004.

Zajceva, N.V., Ulanova, T.S., & Morozova, Ja.S. (2002). Svinec v sisteme mat'-novorozhdennyj kak indikator opasnosti himicheskoj nagruzki v regionah jekologicheskogo neblagopoluchija. Gigiena i sanitarija, 4, 45–46 (in Russian).

Zakrzewska, M., Bialoriska, D., & Sawicka-Kapusta, K. (2002). Cadmium accumulation in fetus and placenta of bank voles (Clethrionomys glareolus). Bull. Environ. Contam., 69, 829–834. doi: 10.1007/s00128-002-0134-2.

Zasiekin, D.A. (2003). Rol platsentarnoho bariera pry mihratsii vazhkykh metaliv z orhanizmu korovy-materi do plodu. Veterynarna medytsyna Ukrainy, 8, 40–41 (in Ukrainian).

Zelinskyi, O.O., & Mishchenko, V.P. (1996). Kontsentratsiia svyntsiu v systemi maty–platsenta–plid. PAH, 5–6, 74–75 (in Ukrainian).

Zubzhickaja, L.B., Kosheleva, N.G., Shapovalova, E.A., Arzhanova, O.N., Dymarskaja, Ju.R., Lavrova, O.V., Semenova, T.V., & Stolpner, Je.G. (2015). Osobennosti sostojanija placentarnogo bar'era zhenshhin pri vlijanii jekzogennyh i jendogennyh faktorov. Zhurnal akusherstva i zhenskih boleznej, LXIV(5), 36–47 (in Russian).

Abstract views: 117
PDF Downloads: 82
Published
2019-04-02
How to Cite
Kalynovskyi, H., Yevtukh, L., Shnaider, V., Zakharin, V., Karpiuk, V., & Omelianenko, M. (2019). Placental barrier permeability to Cadmium and Plumbum during cow pregnancy and at the foaling time of mares. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(93), 74-87. https://doi.org/10.32718/nvlvet9314