Monitoring of the Listeria spp. identification from the poultry products in the Dnipropetrovsk region

Keywords: quality and safety, listeriosis, food toxicoinfection, Listeria spp, identification


Due to high mortality, listeriosis is one of the most common causes of death from illnesses associated with food, taking the second place after salmonellosis. Listeriosis, as a rule, arises as a result of consumption of contaminated products, including meat products, cheese, ready-to-eat foods. L. monocytogenes belongs to the third group of pathogenicity. Contamination by L. monocytogenes in processing of products is a constant problem in food plants. Food contamination Listeria leads to a withdrawal of products that produces economic losses. Analysis of the dynamic detection and of the differential identification of Listeria spp. in the meat products of poultry processing enterprises in Dnipropetrovsk region was conducted. The research was carried out by Dnipropetrovsk regional state laboratory of the state service of Ukraine for food safety and consumer protection. The results of bacteriological researches of meat samples which poultry plants gave for microbiological analysis during period 2008–2018 were used for monitoring. Microbiological research was carried out in accordance with valid international normative documents. The fluorescence analyzer Mini Vidas, France, the CAMP test were used for analysis. The biochemical properties of isolated microorganisms were established using BioMerieux API tests, France. Analyzing the number of researches and identification of microorganisms in the Dnipropetrovsk region for the period of 11 years, 3001 positive results out of 8172 analyzed samples were found (36.7%). Herewith, part of positive samples goes up from 8.5% in 2008 to 77.9% in 2018. L. ivanovii was isolated in 1523 samples (18.6%), L. inocua – 833 (10.2%), L. monocytogenes – 493 (6%), L. seeliger – 97 (1.2%), L. grayi – 36 (0.4%), L. welshimeri in 19 samples of meat products (0.2%) out of the 8172 microbiological studies conducted over 11 years. Of the six types of identified Listeria, more than half were L. ivanovii, which is twice as high as cases with L. incocua and thrice compared to L. monocytogenes.


Download data is not yet available.


Arevalos-Sánchez, M., Regalado, C., Martin, S. E., Domínguez-Domínguez, J., & García-Almendárez, B. E. (2012). Effect of neutral electrolyzed water and nisin on Listeria monocytogenes biofilms, and on lis-teriolysin O activity. Food Control, 24(1-2), 116–122. doi: 10.1016/j.foodcont.2011.09.012.

Batt, C.A. (1999). Kluyveromyces. Encyclopedia

of Food Microbiology, 1115–1118. doi: 10.1006/rwfm.1999.0865.

Batt, C.A. (2014). Listeria | Listeria monocytogenes. Encyclopedia of Food Microbiology, 490–493. doi: 10.1016/b978-0-12-384730-0.00191-9.

Bedie, G.K., Samelis, J., Sofos, J.N., Belk, K.E., Scanga, J.A., & Smith, G.C. (2001). Antimicrobials in the Formulation To Control Listeria monocytogenes Post-processing Contamination on Frankfurters Stored at 4°C in Vacuum Packages. Journal of Food Protection, 64(12), 1949–1955. doi: 10.4315/0362-028x-64.12.1949.

Begley, M., Gahan, C. G. M., & Hill, C. (2002). Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance. Applied and Environmental Microbiology, 68(12), 6005–6012. doi: 10.1128/aem.68.12.6005-6012.2002.

Bover-Cid, S., Belletti, N., Garriga, M., & Aymerich, T. (2011). Model for Listeria monocytogenes inactiva-tion on dry-cured ham by high hydrostatic pressure processing. Food Microbiology, 28(4), 804–809. doi: 10.1016/

Buncic, S., & Avery, S.M. (2004). Microbiological safety of meat | Listeria monocytogenes. Encyclopedia of Meat Sciences, 804–814. doi: 10.1016/b0-12-464970-x/00056-8.

Dieuleveux, V., Collobert, J., Dorey, F., & Guix, E. (2005). Surveillance de la contamination par Listeria spp de réfrigérateurs. Sciences Des Aliments, 25(2), 147–155. doi: 10.3166/sda.25.147-155.

Glebenyuk, V.V., Borovik, I.V., Kuchuk, T.V., & Litvinenko, O.O. (2018). Etiological structure of bac-teriosis of animals in the Dnipropetrovsk region for 2014–2016. Scientific Messenger of LNU of Veteri-nary Medicine and Biotechnologies, 20(83), 260–263. doi: 10.15421/nvlvet8351 (in Ukrainian).

Gray, J.A., Chandry, P.S., Kaur, M., Kocharunchitt, C., Bowman, J.P., & Fox, E.M. (2018). Novel Biocontrol Methods for Listeria monocytogenes Biofilms in Food Production Facilities. Frontiers in Microbiology, 9, 605. doi: 10.3389/fmicb.2018.00605.

Gudbjörnsdóttir, B., Suihko, M.-L., Gustavsson, P., Thor-kelsson, G., Salo, S., Sjöberg, A.-M., … Bredholt, S. (2004). The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic coun-tries. Food Microbiology, 21(2), 217–225. doi: 10.1016/s0740-0020(03)00012-1.

Guillet, C., Join-Lambert, O., Le Monnier, A., Leclercq, A., Mechaï, F., Mamzer-Bruneel, M.-F., … Lecuit, M. (2010). Human Listeriosis Caused by Listeria ivanov-ii. Emerging Infectious Diseases, 16(1), 136–138. doi: 10.3201/eid1601.091155.

Hudson, J.A. (1992). Efficacy of high sodium chloride concentrations for the destruction of Listeria mono-cytogenes. Letters in Applied Microbiology, 14(4), 178–180. doi: 10.1111/j.1472-765x.1992.tb00678.x.

Hupfeld, M., Fouts, D.E., Loessner, M.J., & Klumpp, J. (2015). Genome Sequences of the Listeria ivanovii subsp. ivanovii Type Strain and Two Listeria ivanovii subsp. londoniensis Strains. Genome Announcements, 3(1), e01440-14. doi: 10.1128/genomea.01440-14.

ISO 11290-1:2017 Microbiology of the food chain – Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. – Part 1; Detection method.

ISO 11290-2:2017 Microbiology of the food chain – Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. – Part 2: Enumeration method.

Karyotis, D., Skandamis, P.N., & Juneja, V.K. (2017). Thermal inactivation of Listeria monocytogenes and Salmonella spp. in sous-vide processed marinated chicken breast. Food Research International, 100, 894–898. doi: 10.1016/j.foodres.2017.07.078.

Kim, S., Ruengwilysup, C., & Fung, D.Y.C. (2004). An-tibacterial Effect of Water-Soluble Tea Extracts on Foodborne Pathogens in Laboratory Medium and in a Food Model. Journal of Food Protection, 67(11), 2608–2612. doi: 10.4315/0362-028x-67.11.2608.

Marquis, H., Drevets, D.A., Bronze, M.S., Kathariou, S., Golos, T. G., & Iruretagoyena, J.I. (2015). Pathogene-sis of Listeria monocytogenes in Humans. Human Emerging and Re-Emerging Infections, 749–772. doi: 10.1002/9781118644843.ch40.

Martins, E.A., & Leal Germano, P.M. (2011). Listeria monocytogenes in ready-to-eat, sliced, cooked ham and salami products, marketed in the city of São Pau-lo, Brazil: Occurrence, quantification, and serotyping. Food Control, 22(2), 297–302. doi: 10.1016/j.foodcont.2010.07.026.

McLauchlin, J. (2011). Listeriosis. Oxford Medicine Online. doi: 10.1093/med/9780198570028.003.0014.

Norwood, D.E., & Gilmour, A. (2000). The growth and resistance to sodium hypochlorite of Listeria mono-cytogenes in a steady-state multispecies biofilm. Jour-nal of Applied Microbiology, 88(3), 512–520. doi: 10.1046/j.1365-2672.2000.00990.x.

Palumbo, S.A., & Williams, A.C. (1991). Resistance ofListeria monocytogenes to freezing in foods. Food Microbiology, 8(1), 63–68. doi: 10.1016/0740-0020(91)90017-v.

Rizzuto, G.A., & Bakardjiev, A.I. (2018). Listeria mono-cytogenes. Oxford Medicine Online. doi: 10.1093/med/9780190604813.003.0020.

Samelis, J., & Metaxopoulos, J. (1999). Incidence and principal sources of Listeria spp. and Listeria mono-cytogenes contamination in processed meats and a meat processing plant. Food Microbiology, 16(5), 465–477. doi: 10.1006/fmic.1998.0263.

Saraiva, C., García-Díez, J., Fontes, M. da C., & Esteves, A. (2018). Modeling the Behavior of Listeria mono-cytogenes in Meat. Listeria Monocytogenes. doi: 10.5772/intechopen.79967.

Schwartz, B., Broome, C., Brown, G., Hightower, A., Ciesielski, C., Gaventa, S., … Listeriosis Study Group. (1988). Association of sporadic listeriosis with consumption of uncooked hot dogs and undercooked chicken. The Lancet, 332(8614), 779–782. doi: 10.1016/s0140-6736(88)92425-7.

Shcherbyna, R.O., Parchenko, V.V. Safonov, A.A Bushueva, I., Zazharskiy, V.V., Davydenko, P.O., Kulishenko, O.M., Borovic, I.V. (2018) Synthesis and research of the impact of new derivatives of 4-R-3(morpholinomethyl)-4H-1, 2, 4-triazole-5-thiol on cultural attributes of pathogenic M. bovis. Research journal of pharmaceutical biological and chemical sciences, 9(2), 70–79.

Soriano, J.M., Rico, H., Moltó, J.C., & Mañes, J. (2001). Listeria species in Raw and Ready-to-Eat Foods from Restaurants. Journal of Food Protection, 64(4), 551–553. doi: 10.4315/0362-028x-64.4.551.

Troncoso, A., Rebagliati, V., Philippi, R., & Rossi, M. (2009). Prevention of foodborne listeriosis. Indian Journal of Pathology and Microbiology, 52(2), 145. doi: 10.4103/0377-4929.48903.

Vázquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Domı́nguez-Bernal, G., Goebel, W., ... & Kreft, J. (2001). Listeria pathogenesis and mo-lecular virulence determinants. Clinical microbiology reviews, 14(3), 584–640.

Voelker, R. (2002). Listeriosis Outbreak Prompts Action—Finally. JAMA, 288(21), 2675. doi: 10.1001/jama.288.21.2675-jmn1204-2-1.

Wang, Y., Wang, Y., & Ye, C. (2018). Endonuclease restriction-mediated real-time PCR for simultaneous detection of Listeria monocytogenes and Listeria iva-novii. Analytical Methods, 10(11), 1339–1345. doi: 10.1039/c7ay02667f.

Weinsetel, N.A. (n.d.). (2006). Antimicrobial action of selected plant-derived compounds against Listeria monocytogenes. doi: 10.31274/rtd-180813-12172.

Wiedmann, M., & Sauders, B. (2007). Ecology of Listeria Species and L. monocytogenes in the Natural Envi-ronment. Listeria, Listeriosis, and Food Safety, Third Edition, 21–53. doi: 10.1201/9781420015188.ch2.

Zazharska, N.M., & Ryaba, A.A. (2016). Sanitary quality of goat milk in the application of the homeopathic preparations for milking. Scientific and technical bul-letin of State Scientific Research Control Institute of Veterinary Medical Products and Fodder Additives and Institute of Animal Biology, 17(1), 72–77 (in Ukrainian).

Zazharskyi, V.V., Davydenko, P.O., Kulishenko, O.M., Chumak, V.O., Kryva, O.A., Biben, I.A., Tishkina N.M., Borovik, I.V., Boyko, O.O., Brygadyrenko, V.V. (2018a). Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde. Regulato-ry Mechanisms in Biosystems, 9(4), 540–545. doi: 10.15421/021881.

Zazharskyi, V.V., Davydenko, P.O., Kulishenko, O.M., Borovik, I.V. (2018b). Bacterial properties of ethanol extracts of phytopreparation a staphylococcus spp Bulletin of Veterinary Biotechnology, 32(2), 185–193 (in Ukrainian).

Zazharskyi, V.V., Davydenko, P.O., Kulishenko, O.M., Chumak, V.O., Kryva, O.A., Babaruk, A., Borovik, I.V. (2018c). Comparative assessment of bactericidal properties of disinfectants. Bulletin of the Sumy National Agrarian University, 42(1), 273–276 (in Ukrainian).

Zazharskyi, V. V., Fotinа, T. I., Berezovsky, A. V., Davydenko, P. O., Kulishenko, O. M., Chumak, V. O., Kryva, O. A., Borovik, I. V. (2018d). Influence of disinfectants on cryogenic strains of microorganisms. The Journal of the Dnipropetrovsk State Agrarian and Economic University, Veterinary Sciences, 47(1–2), 53–58 (in Ukrainian).

Abstract views: 0
PDF Downloads: 0
How to Cite
Zazharska, N., & Borovuk, I. (2019). Monitoring of the Listeria spp. identification from the poultry products in the Dnipropetrovsk region. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(93), 103-108.