The concentration of insuline-like growth factor in colostrum, milk and plasma of cows


Keywords: food safety, hormones, oncological diseases, lactation

Abstract

Recently, a significant amount of data has been reported indicating on the link between consumption of dairy products and development of oncological diseases. This could be explained by the presence in milk of various hormones, particularly insulin-like growth factor (IGF). This hormone is a mediator between somatotropin and tissues. In response to the increase of the blood level of growth hormone, hepatocytes begin actively synthesize the IGF, which accelerates the rate of the metabolism, including those of onco-cells. The majority of studies relate to humane medicine, and data on the dependence of IGF milk levels on breed, period of lactation, diet, physiological, and clinical status of an animal are lacking. Taking this into consideration, the purpose of this study was to analyze the concentration of insulin-like factor in colostrum, milk of cows and blood plasma at various stages of lactation. Study was performed on cows of Ukrainian black-and-white dairy breed in their from second to fifth lactation with milk yield 5100–5700 kg per previous lactation. Concentration of IGF was detected in colostrum, milk and plasma of cows, using enzyme immunoassay. Obtained material gives evidence that the highest IGF level is present in colostrum. After that hormone concentration decreases up to 10–14 day of lactation. High level of IGF in colostrum might be associated with necessity to stimulate metabolism of calves in early postnatal period of ontogenesis. Immediately after calving plasma level of IGF decreases. The highest level was observed on 10–14th days of lactation. Taking into consideration physiological function of the given hormone, there is no univocal explanation of the decrease of its plasma level in cows at the beginning of lactation. This could be associated with energy deficit, physiological condition of animals or with developing of lactation dominant and levels of other hormones. Potential of further research lies in investigation of the dependence of the IGF level in the secretion of the mammary gland on productivity, breed, age and diet of animals.

Downloads

Download data is not yet available.

References

Braak, B., Siezen, C., Speksnijder, E.N., Koedoot, E., van Steeg, H., Salvatori, D.C., van de Water, B. & van der Laan, J.W. (2015). Mammary gland tumor promotion by chronic administration of IGF1 and the insulin analogue AspB10 in the p53R270H/⁺ WAPCre mouse model. Breast Cancer Res., 17, 14. doi: 10.1186/s13058-015-0518-y.

Duarte-Salles, T., Fedirko, V., Stepien, M., Trichopoulou, A., Bamia, C., Lagiou, P., Lukanova, A., Trepo, E., Overvad, K., Tjønneland, A., Halkjaer, J., Boutron-Ruault, M.C., Racine, A., Cadeau, C., Kühn, T., Ale-ksandrova, K., Trichopoulos, D., Tsiotas, K., Boffetta, P., Palli, D., Pala, V., Tumino, R., Sacerdote, C., Pan-ico, S., Bueno-de-Mesquita, H.B., Dik, V.K., Peeters, P.H., Weiderpass, E., Torhild Gram, I., Hjartåker, A., Ramón Quirós, J., Fonseca-Nunes, A., Molina-Montes, E., Dorronsoro, M., Navarro Sanchez, C., Barricarte, A., Lindkvist, B., Sonestedt, E., Johansson, I., Wennberg, M., Khaw, K.T., Wareham, N., Travis, R.C., Romieu, I., Riboli, E., & Jenab, M. (2014). Dairy products and risk of hepatocellular carcinoma: the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer, 135(7), 1662–1672. doi: 10.1002/ijc.28812.

Frezza, V., Fierro, C., Gatti, E., Peschiaroli, A., Lena, A.M., Petruzzelli, M.A., Candi, E., Anemona, L., Mauriello, A., Pelicci, P.G., Melino, G., & Bernassola, F. (2018). ΔNp63 promotes IGF1 signalling through IRS1 in squamous cell carcinoma. Aging (Albany NY), 10(12), 4224–4240. doi: 10.18632/aging.101725.

Frysaka, Z., Schovaneka, J., Iacoboneb, M., & Karaseka, D. (2015). Insulin-like Growth Factors in a clinical setting: Review of IGF-I. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub., 159(3), 347–351. doi: 10.5507/bp.2015.041.

Gkioka, E., Msaouel, P., & Philippou, A. (2015). The role of insulin-like growth factor-1 signaling pathways in uterine leiomyoma. J. In Vivo, 29(6), 637–649. https://www.ncbi.nlm.nih.gov/pubmed/26546520.

Harrison, S., Lennon, R., Holly, J., Higgins, J.P.T., Gardner, M., Perks, C., Gaunt, T., Tan, V., Borwick, C., Emmet, P., Jeffreys, M., Northstone, K., Rinaldi, S., Thomas, S., Turner, S.D., Pease, A., Vilenchick, V., Martin, R.M., & Lewis, S.J. (2017). Does milk intake promote prostate cancer initiation or progression via effects on insulin-like growth factors (IGFs)? A systematic review and meta-analysis. Cancer Causes Control, 28(6), 497–528. doi: 10.1007/s10552-017-0883-1.

Kim, J.W. (2014). Modulation of the somatotropic axis in periparturient dairy cows. Asian-Australas J. Anim. Sci., 27(1), 147–154. doi: 10.5713/ajas.2013.13139.

Kleinberg, D.L. & Barcellos-Hoff, M.H. (2011). The pivotal role of insulin-like growth factor I in normal mammary development. Endocrinol Metab Clin North Am., 40(3), 461–471. doi: 10.1016/j.ecl.2011.06.001.

Malven, P., Head, H., Collier, R.J. & Buonomo, F. (1987). Periparturient changes in secretion and mammary uptake of insulin and in concentrations of insulin and insulin-like growth factors in milk of dairy cows. J. Dairy Sci., 70(11), 2254–2265. doi: 10.3168/jds.S0022-0302(87)80285-0.

Miura, Y., Kato, H., & Noguchi, T. (1992). Effect of dietary proteins on insulin-like growth factor-1 (IGF-1) messenger ribonucleic acid content in rat liver. The British journal of nutrition, 67(2), 257–265. https://www.ncbi.nlm.nih.gov/pubmed/1596498.

Nielsen, T.S., Purup, S., Wärri, A., Godschalk, R.W., & Hilakivi-Clarke, L. (2011). Effects of maternal expo-sure to cow's milk high or low in isoflavones on car-cinogen-induced mammary tumorigenesis among rat offspring. Cancer Prev Res (Phila), 4(5), 694–701. doi: 10.1158/1940-6207.CAPR-10-0220.

Park, S.W., Kim, J.Y., Kim, Y.S., Lee, S.J., Lee, S.D., & Chung, M.K. (2014). A milk protein, casein, as a pro-liferation promoting factor in prostate cancer cells. World J Mens Health, 32(2), 76–82. doi: 10.5534/wjmh.2014.32.2.76.

Partridge, L., Alic, N., Bjedov, I., & Piper, M.D. (2011). Ageing in drosophila: the role of the insulin/Igf and TOR signalling network. J. Exp Gerontol, 46(5), 376–381. doi: 10.1016/j.exger.2010.09.003.

Rieunier, G., Wu, X., Macaulay, V.M., Lee, A.V., Weyer-Czernilofsky, U., & Bogenrieder, T. (2019). Bad to the Bone: The Role of the Insulin-Like Growth Factor Axis in Osseous Metastasis. Clin Cancer Res. doi: 10.1158/1078-0432.CCR-18-2697.

Rogers, I., Emmett, P., Gunnell, D., Dunger, D., & Holly, J. (2006). Milk as a food for growth? The insulin-like growth factors link. Public Health Nutr., 9(3), 359–368. https://www.ncbi.nlm.nih.gov/pubmed/16684388.

Salmon, W.D., & Daughaday, W.H. (1957). A hormonally controlled serum factor which stimulates sulfate incor-poration by cartilage in vitro. J. Lab. Clin. Med., 49(6), 825–836. https://www.ncbi.nlm.nih.gov/pubmed/ 13429201.

Sejrsen, K., Pedersen, L.O., Vestergaard, M., & Purup, S. (2001). Biological activity of bovine milk: Contribu-tion of IGF-I and IGF binding proteins. Livestock Production Science, 70(1–2), 79–85. doi: 10.1017/S0022029906002093.

Simonov, M.R. (2013). Vmist gormoniv shhytopodibnoi' ta pryshhytopodibnoi' zaloz u plazmi krovi vysokoproduktyvnyh koriv na riznyh fazah laktacii' ta periodah utrymannja. Naukovo-tehnichnyj bjuleten' Instytut biologii' tvaryn ta DNDKI vetpreparativ ta kormovyh dobavok, 14(1–2), 59–62 (in Ukrainian).

Thornton, K.J., Kamange-Sollo, E., White M.E., & Day-ton, W.R. (2016). Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures. J. Anim. Sci., 94(6), 2332–2343. doi: 10.2527/jas.2015-0178.

Um, C.Y., Fedirko, V., Flanders, W.D., Höflich, C., Wirthgen, E., & Bostick R.M. (2017). Circulating in-sulin-like growth factor-related biomarkers: Correlates and responses to calcium supplementation in colorec-tal adenoma patients. Mol Carcinog, 56(9), 2127–2134. doi: 10.1002/mc.22669.

Vigneri, P.G., Tirrò, E., Pennisi, M.S., Massimino, M., Stella, S., Romano, C., & Manzella, L. (2015). The insulin/IGF system in colorectal cancer development and resistance to therapy. J. Front Oncol., 5, 230. doi: 10.3389/fonc.2015.00230.

Abstract views: 8
PDF Downloads: 1
Published
2019-04-02
How to Cite
Hrudetska, D., Simonov, M., & Dashkovskyy, O. (2019). The concentration of insuline-like growth factor in colostrum, milk and plasma of cows. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(93), 121-124. https://doi.org/10.32718/nvlvet9321