Efficiency of application of modern sanitation supplies in beekeeping

  • M. V. Leshchyshyn Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
  • I. V. Dvylyuk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine https://orcid.org/0000-0002-6320-4778
  • M. M. Rykniuk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, Ukraine
Keywords: honey bees (Apis mellifera), hive, desinfection, nanopartale.


The article presents the results of studies of the effect of commercial disinfectants registered in Ukraine and allowed for use in beekeeping, as well as a comparative characteristic of their effectiveness in the disinfection of wooden beehive structures. The research was conducted on the basis of the departments of hygiene, sanitation and general veterinary prevention and technology of production and processing of products of small animals of the Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytskyi and SLW “Biolab” Food and Veterinary Diagnostic Laboratory (Ostroda, Poland). For research in the spring and summer period 4 groups of test objects were formed on the principle of analogues. Distilled water was used to control disinfection (test group 1). In the second experimental group for disinfection used Brovadez-20 (active substance benzalkonium chloride 0.5%), in the third experimental group гру Vetox-1000 (active substance hypochlorite 0.3%) and in the fourth experimental group – Sumerian silver”(active ingredient of 10% citrate of Argentum citrate). In a comparative analysis of the effectiveness of the disinfectants of the II, III and IV groups, the growth of gram-positive (Streptomyces badius, Curtobakterium) and gram-negative bacteria (Xanthomonas hyacinthi, Pseudomonas alcaligenes, Acidovorax defluvii) was detected, respectively, among the endophores. In the current literature, information on the threat to the health of the honey bee detected by microorganisms is missing. According to the research, certain differences between the effectiveness of disinfectants have been established. It was found that the total microbial number (BMI) was 0.15% in group II, 0.16% in group III and up to 0.10% in group IV relative to control. It was found that the Sumer silver disinfectant at 10% concentration provides the best bactericidal effect (P < 0.001). In a comparative intergroup analysis of the effectiveness of disinfectants, it was found that in the conditions of the experiment, the level of bactericidal activity was the highest in the experiment with the SMC in the case of the use of Sumer silver was 32.3% and 34.4% better compared to Brovades-20 and Vetox-1000”, respectively. The use of Sumerian silver allows you to get the desired result 10 and 4 times faster than the disinfectants Brovadez-20 and Vetox-1000 respectively.


Download data is not yet available.


Besinis, A., De Peralta, T., & Handy, R. (2014).The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology, 8(1), 1–16. doi: 10.3109/17435390.2012.742935.

Chen, Y., Evans, J., Smith, B., & Pettis, J. (2008). Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera), in the United States. Invertebrate Pathology, 97(2), 186–188. doi: 10.1016/j.jip.2007.07.010.

Cloyd, R. (2019). Effects of Pesticides and Adjuvants on the Honey Bee, Apis mellifera. doi: 10.5772/ intechopen.89082.

Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., & Galdiero, M. (2015). Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), 8856–8874. doi: 10.3390/molecules20058856.

Gurunathan, S., Han, J.W., Kwon, D.N., & Kim, J.H. (2014) Enhanced antibacterial and anti-biofilm activi-ties of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett, 9(1), 373. doi: 10.1186/1556-276X-9-373.

Guzmán-Novoa, E., Eccles, L., Calvete, Y., Mcgowan, J., Kelly, P., & Correa-Benítez, A. (2010). Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario. Canada Apidologie, 41(4), 443–450. https://link.springer.com/article/10.1051/apido/2009076.

Kisterskaya, L., Sadokhin, V., & Sadokhin, V. (2012). Biosovmestimyye dezinfektanty novogo pokoleniya na osnove nanoserebra. International Science and Technology Days Poland, 1, 53–59. http://www.nanoindustry.su/files/article_pdf/2/article_2593_552.pdf.

Kovalchuk, I., Dvylyuk, I., Lecyk, Y., Dvylyuk, I., & Gutyj, B. (2019). Physiological relationship between content of certain microelements in the tissues of dif-ferent anatomic sections of the organism of honey bees exposed to citrates of argentum and cuprum. Regulatory Mechanisms in Biosystems, 10(2), 177–181. doi: 10.15421/021926.

Kovalskyi, Yu., Gucol, A., Gutyj, B., Sobolev, O., Ko-valska, L., & Mironovych, A. (2018). Features of his-tolism and hystogenesis in the vital temperature range in the organism of honey bee (Apis mellifera L.) in the postembrional period. Ukrainian Journal of Ecology, 8(2), 301–307. doi: 10.15421/2018_342.

Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D., Sagili, R., Pettis, J., Ellis, J., Wilson, M., Wilkes, J., Tar-py, D., Rose, R., Lee, K., & Rangel, J. (2017). A national survey of managed honey bee 2015–2016 annual colony losses in the USA. Journal of Apicul-tural Research, 56(4), 328–340. doi: 10.1080/00218839.2017.1344496.

Lara, H., Garza-Trevino, E., Ixtepan-Turrent, L., & Singh, D. (2011). Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Nanobiotech-nol, 9(30), 32. doi: 10.1186/1477-3155-9-30.

Morones, J., Elechiguerra, J., Camacho, A., Holt, K., Kou-ri, J., Ramírez, J., & Yacaman, M. (2005). The bacte-ricidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353. doi: 10.1088/0957-4484/16/10/059.

Natarajan, K., Selvaraj, S., & Ramachandra, M. (2010). Microbial production of silver nanoparticles. Nano-mater. Biostruct, 5(1), 135–140. http://admin.umt.edu.pk/Media/Site/STD/FileManager/OsamaArticle/August2015/10august/135_Natarajan.pdf.

Ouay, B., & Stellacci, F. (2015). Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today, 10(3), 339–354. doi: 10.1016/j.nantod.2015.04.002.

Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., & Chen, Y. (2017). Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomateri-als, 22(7), 21. doi: 10.3390/nano7010021.

Ramsey, S., Ochoa R., Bauchan G., Gulbronson C., Mowery J., Cohen A., Lim, D., Joklik, J., Cicero, J., El-lis, J., Hawthorne, D., & vanEngelsdorp, D. (2019) Varroa Destructor Feeds Primarily on Honey Bee Fat Body Tissue and Not Hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792–1801. doi: 10.1073/pnas.1818371116.

Rizzello, L., & Pompa, P. (2014). Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev, 43(5), 1501–1518. doi: 10.1039/c3cs60218d.

Romanchenko, M., Masliy, I., Kundenko, M., Sanin, K., & Tsekhmeyster, O. (2015). Doslidzhennya dezinfi-kuyuchoyi diyi UV u zabezpechenni zberezhennya biopotentsialu bdzholosimey. Tvarynnytstvo ta tekhnolohiyi kharchovykh produktiv, 223, 162–167. http://journals.nubip.edu.ua/index.php/Tekhnologiya/article/view/5863 (in Ukrainian).

Shahverdi, A., Fakhimi, A., Shahverdi, H., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedісіne, 3(2), 168–171. doi: 10.1016/j.nano.2007.02.001.

Slavin, Y., Asnis, J., Häfeli, U., & Bach, H. (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Nanobiotechnology, 15, 65. doi: 10.1186/s12951-017-0308-z.

van Engelsdorp, D., Traynor, K.S., Andree, M., Lichten-berg, E.M., Chen, Y., Saegerman, C., & Cox-Foster, D.L. (2017). Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. Plos One, 12(7), e0179535. doi: 10.1371/journal.pone.0179535.

Vimbela, G., Ngo, S., Fraze, C., Yang, L., & Stout, D. (2017). Antibacterial properties and toxicity from metallic nanomaterials. Nanomedicine,12, 3941–3965. doi. 10.2147/IJN.S134526.

Vishchur, V.Y., Saranchuk, I.I., & Gutyj, B.V. (2016). Fatty acid content of honeycombs depending on the level of technogenic loading on the environment. Visnyk of Dnipropetrovsk University. Biology, ecology, 24(1), 182–187. doi: 10.15421/011622.

Vishchur, V.Y., Gutyj, B.V., Nischemenko, N.P., Kushnir, I.M., Salata, V.Z., Tarasenko, L.O., Khimych, M.S., Kushnir, V.I., Kalyn, B.M., Magrelo, N.V., Boiko, P.K., Kolotnytskyy, V.A., Velesyk, T., Pundyak, T.O., & Gubash, O.P. (2019). Effect of industry on the content of fatty acids in the tissues of the honey-bee head. Ukrainian Journal of Ecology, 9(3), 174–179.

Yakubchak, O., Khomenko, V., & Bondar, T. (2005). Rekomendatsiyi shchodo sanitarno-mikrobiolohichnoho doslidzhennya zmyviv z pov-erkhonʹ test-obyektiv ta obyektiv veterynarnoho nahlyadu i kontrolyu. K.: Vydavnychyy tsentr NAU (in Ukrainian).

Yegorova, Ye., Kubatiayev, A., & Shvets, V. (2014). Biologicheskiye effekty nanochastits metallov. Nauka (in Russian).

Abstract views: 92
PDF Downloads: 66
How to Cite
Leshchyshyn, M., Dvylyuk, I., & Rykniuk, M. (2019). Efficiency of application of modern sanitation supplies in beekeeping. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 21(96), 185-191. https://doi.org/10.32718/nvlvet9632