Species composition and methicillin resistance of staphylococci taken on dairy farms

Keywords: staphylococci, dairy farms, β-lactam antibiotics, antibiotic resistance


Methicillin-resistant staphylococci can often asymptomatically colonize animals and humans and are capable of causing disease in them. Therefore, their identification and species identification are important for establishing the source of zoonotic infection and the reservoirs of antimicrobial resistance genes. The purpose of the search was to study the spread of methicillin-resistant staphylococci on dairy farms in the Western region of Ukraine. BD Baird-Parker Agar (HiMedia, India) was used to isolate staphylococci. Specific identification of pure cultures was performed using “RapID Staph Plus” kits (Oxord, UK). Staphylococcus sensitivity to methicillin was determined by inoculum application on Muller-Hinton agar with oxacillin (HiMedia, India). The sensitivity of the isolates to antibacterial preparations was determined by disco-diffusion method. The results of our searches show that Staphylococcus aureus is virtually identical in the amount both from cows (50.1 %) and from humans (62.4 %). In this case the frequency of its isolation among other species was 20.3 %. Along with Staphylococcus aureus there are such species as: S. haemolyticus (20.3 %), S. saprophyticus (13.6 %), S. xylosus (14.0 %), S. chromogenes (11.1 %), S. sciuri (8.8 %), S. epidermidis (4.8 %), S. hominis (3.4 %), S. cohnii (2.6 %) and S. warner (0.7 %). In this case, approximately the same irradiation of cows, humans and the environment by species S. haemolyticus (44.5:70.8:58.8 %), S. epidermidis (12.7:16.6:9.1 %), S. xylosus (26.0:37.4:52.9 %) is observed. The share of S. aureus strains on methicillin-resistant dairy farms in the Western Ukraine is 26.8 %. The proportion of S. aureus strains on methicillin-resistant dairy farms in the Western Ukraine is 26.8 %. Methicillin resistance is also shown S. haemolyticus, S. saprophyticus, S. xylosus та S. chromogenes. In this case their number is 1.1, 1.3, 1.6 and 5.5 times lower, respectively, and S. hominis 1.2 times higher than S. aureus. In addition, the selected cultures simultaneously show resistance to two or more antibiotics. Thus, staphylococci circulating on dairy farms are a large reservoir of resistance genes of antimicrobial preparations. Therefore, it is necessary to establish a constant control of the secretion of staphylococci resistant to β-lactam antibiotics.


Download data is not yet available.


Abreu, R., Rodríguez-Alvarez, C., Lecuona, M., Castro, B., Gonzalez, J. C., Aguirre-Jaime, A., & Arias, A. (2019). Increased antimicrobial resistance of MRSA strains isolated from pigs in Spain between 2009 and 2018. Veterinary sciences, 6(2), 1–7. doi: 10.3390/vetsci6020038.

Alnakip, M. E., Quintela-Baluja, M., Böhme, K., Caama-ño-Antelo, S., Bayoumi, M. A., Kamal, R. M., & Bar-ros-Velázquez, J. (2019). Molecular characterisation and typing the methicillin resistance of Staphylococ-cus spp. isolated from raw milk and cheeses in north-west Spain: A mini survey. International dairy journal, 89, 68–76. doi: 10.1016/j.idairyj.2018.09.006.

Anker, J. C. H., Koch, A., Ethelberg, S., Molbak, K., Lar-sen, J., & Jepsen, M. R. (2018). Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms. A nationwide study. Zo-onoses Public Health, 65(3), 352–360. doi: 10.1111/zph.12441.

Barbier, F., Ruppe, E., Hernandez, D., Lebeaux, D., Francois, P., Felix, B., & Jeanrot, C. (2010). Methicil-lin-resistant coagulase-negative staphylococci in the community: high homology of SCCmec IVa between Staphylococcus epidermidis and major clones of methicillin-resistant Staphylococcus aureus. The Jour-nal of infectious diseases, 202(2), 270–281. doi: 10.1086/653483.

Feld, L., Bay, H., Angen, O., Larsen, A. R., & Madsen, A. M. (2018). Survival of LA-MRSA in Dust from Swine Farms. Ann. Work Expo. Health, 62(2), 147–156. doi: 10.1093/annweh/wxx108.

Ghodasara, S. N., Purohit, J. H., Patel, J. S., Mathapati, B. S., Javia, B. B., Barad, D. B., & Sindhi, S. H. (2018). Recent Trend in Antibiotic Resistance Pattern of Methicillin-Resistant Staphylococci from Animal and Human. Indian journal of Veterinary Science & Bio-technology, 14(1), 8–12. doi: 10.21887/ijvsbt.v14i1.12989.

Goerge, T., Lorenz, M. B., van Alen, S., Hübner, N. O., Becker, K., & Kock, R. (2017). MRSA colonization and infection among persons with occupational live-stock exposure in Europe: prevalence, preventive op-tions and evidence. Veterinary microbiology, 200, 6–12. doi: 10.1016/j.vetmic.2015.10.027.

Grundmann, H., Aanensen, D. M., Van Den Wijngaard, C. C., Spratt, B. G., Harmsen, D., Friedrich, A. W., & European Staphylococcal Reference Laboratory Working Group. (2010). Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS medicine, 7(1), 1–15. doi: 10.1371/journal.pmed.1000215.

Guimaraes, F. F., Manzi, M. P., Joaquim, S. F., Richini-Pereira, V. B., & Langoni, H. (2017). Outbreak of methicillin-resistant Staphylococcus aureus (MRSA)-associated mastitis in a closed dairy herd. Journal of dairy science, 100(1), 726–730. doi: 10.3168/jds.2016-11700.

Haag, A. F., Fitzgerald, J. R., & Penadés, J. R. (2019). Staphylococcus aureus in Animals. Gram‐Positive Pathogens, 731–746. doi: 10.1128/9781683670131.ch46.

Hammad, A. M., Watanabe, W., Fujii, T., & Shimamoto, T. (2012). Occurrence and characteristics of methicil-lin-resistant and susceptible Staphylococcus aureus and methicillin-resistant coagulase-negative staphylo-cocci from Japanese retail ready-to-eat raw fish. Int. J. Food Microbiol., 156(3), 286–289. doi: 10.1016/j.ijfoodmicro.2012.03.022.

Hanselman, B. A., Kruth, S. A., Rousseau, J., Low, D. E., Willey, B. M., McGeer, A., & Weese, J. S. (2006). Methicillin-resistant Staphylococcus aureus coloniza-tion in veterinary personnel. Emerging infectious dis-eases, 12(12), 1933–1938. doi: 10.3201/eid1212.060231.

Horiuk, Y. V. (2019). Lytic Activity of Staphylococcal Bacteriophage on Different Biotypes of Staphylococ-cus aureus. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sci-ences, 21(94), 115–120. doi: 10.32718/nvlvet9421.

Horiuk, Y. V., Kukhtyn, M. D., Strayskyy, Y. S., Havryl-ianchyk, R. Y., Horiuk, V. V., & Fotina, H. A. (2018). Comparison of the minimum bactericidal concentra-tion of antibiotics on planktonic and biofilm forms of Staphylococcus aureus: Mastitis causative agents. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), 616–622.

Horiuk, Yu., Kukhtyn, M., Kovalenko, V., Kornienko, L., Horiuk, V., & Liniichuk, N. (2019). Biofilm formation in bovine mastitis pathogens and the effect on them of antimicrobial drugs. Independent Journal of Man-agement & Production, 10(7), 897–910. doi: 10.14807/ijmp.v10i7.1012.

Horiuk, Yu. V., Kukhtyn, M. D., Perkiy, Yu. B., & Horiuk, V. V. (2018). Distribution of main pathogens of masti-tis in cows on dairy farms in the western region of Ukraine. Scientific Messenger of Lviv National Uni-versity of Veterinary Medicine and Biotechnologies, 20(83), 115–119. doi: 10.15421/nvlvet8322.

Horiuk, Y. V. (2018). Fagotherapy of cows mastitis as an alternative to antibiotics in the system of obtaining environmentally safe milk. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Se-ries: Veterinary Sciences, 20(88), 42–47. doi: 10.32718/nvlvet8807.

Johler, S., Macori, G., Bellio, A., Acutis, P.L., Gallina, S., & Decastelli, L. (2018). Short communication: Charac-terization of Staphylococcus aureus isolated along the raw milk cheese production process in artisan dairies in Italy. J. Dairy Sci., 101(4), 2915–2920. doi: 10.3168/jds.2017-13815.

Kovalenko, V. L., Kovalenko, P. L., Ponomarenko, G. V., Kukhtyn, M. D., Midyk, S. V., & Horiuk, Y. V. (2018). Changes in lipid composition of Escherichia coli and Staphylococcus areus cells under the influence of dis-infectants Barez®, Biochlor® and Geocide®. Ukrain-ian Journal of Ecology, 18, 8(1), 547–550. doi: 10.15421/2018_248.

Kukhtyn, M. D., Horyuk, Y. V., Horyuk, V. V., Yaroshen-ko, T. Y., Vichko, O. I., & Pokotylo, O. S. (2017). Bio-type characterization of Staphylococcus aureus iso-lated from milk and dairy products of private produc-tion in the western regions of Ukraine. Regulatory Mechanisms in Biosystems, 8(3), 384–388. doi: 10.15421/021759.

Locatelli, C., Cremonesi, P., Caprioli, A., Carfora, V., Ianzano, A., Barberio, A., Morandi, S., Casula, A., Castiglioni, B., Bronzo, V. (2017). Occurrence of methicillin-resistant Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in con-tact with herds. Dairy Sci., 100(1), 608–619. doi: 10.3168/jds.2016-11797.

Mahdavi, F., Zaboli, F., & Khoshbakht, R. (2019). Char-acteristics of Erythromycin Resistance in Methicillin-Resistant Staphylococcus aureus Isolated From Raw Milk. International Journal of Enteric Pathogens, 7(4), 121–125. doi: 10.15171/ijep.2019.25.

Medina M., Legido-Quigley H., & Hsu L. Y. (2020) Anti-microbial Resistance in One Health. In: Masys A., Izurieta R., Reina Ortiz M. (eds) Global Health Securi-ty. Advanced Sciences and Technologies for Security Applications. Springer, Cham. doi: 10.1007/978-3-030-23491-1_10.

Normanno, G., Spinelli, E., Barlaam, A., Parisi, A., Tinelli, A., & Capozzi, L. (2019). Methicillin-Resistant Staph-ylococcus aureus (MRSA) in Food of Animal Origin: A New Challenge in Food Safety?. EC Microbiology, 15(6), 449–454.

Papadopoulos, P., Angelidis, A. S., Papadopoulos, T., Kotzamanidis, C., Zdragas, A., Papa, A., & Sergelidis, D. (2019). Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in bulk tank milk, live-stock and dairy-farm personnel in north-central and north-eastern Greece: Prevalence, characterization and genetic relatedness. Food microbiology, 84, 103249. doi: 10.1016/j.fm.2019.103249.

Parisi, A., Caruso, M., Normanno, G., Latorre, L., Sottili, R., Miccolupo, A., & Santagada, G. (2016). Preva-lence, antimicrobial susceptibility and molecular typ-ing of methicillin-resistant Staphylococcus aureus (MRSA) in bulk tank milk from southern Italy. Food microbiology, 58, 36–42. doi: 10.1016/j.fm.2016.03.004.

Rahi, A., Kazemeini, H., Jafariaskari, S., Seif, A., Hos-seini, S., & Safarpoor Dehkordi, F. (2020). Genotypic and Phenotypic-Based Assessment of Antibiotic Re-sistance and Profile of Staphylococcal Cassette Chromosome mec in the Methicillin-Resistant Staphy-lococcus aureus Recovered from Raw Milk. Infection and drug resistance, 13, 273–283. doi: 10.2147/IDR.S229499.

Sivakumar, M., Dubal, Z. B., Kumar, A., Bhilegaonkar, K., Kumar, O. R. V., Kumar, S., & Dwivedi, A. (2019). Virulent methicillin resistant Staphylococcus aureus (MRSA) in street vended foods. Journal of food sci-ence and technology, 56(3), 1116–1126. doi: 10.1007/s13197-019-03572-5.

Stefani, S., & Varaldo, P. E. (2003). Epidemiology of methicillin-resistant staphylococci in Europe. Clinical microbiology and infection, 9(12), 1179–1186. doi: 10.1111/j.1469-0691.2003.00698.x.

Van Duijkeren, E., Box, A. T. A., Heck, M. E. O. C., Wan-net, W. J. B., & Fluit, A. C. (2004). Methicillin-resistant staphylococci isolated from animals. Veterinary mi-crobiology, 103(1-2), 91–97. doi: 10.1016/j.vetmic.2004.07.014.

Voss, A., Loeffen, F., Bakker, J., Klaassen, C., & Wulf, M. (2005). Methicillin-resistant Staphylococcus aureus in pig farming. Emerging infectious diseases, 11(12), 1965–1966. doi: 10.3201/eid1112.050428.

Abstract views: 3
PDF Downloads: 5
How to Cite
Horiuk, Y., Kukhtyn, M., Salata, V., & Horiuk, V. (2020). Species composition and methicillin resistance of staphylococci taken on dairy farms. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97), 13-19. https://doi.org/10.32718/nvlvet9703