Antimicrobial susceptibility of isolates of Salmonella enterica subsp. Enterica isolated in Ukraine during the period of 2014–2017

Keywords: Salmonella, Enterobacteriaceae, antibiotic resistance, zoonoses, β-lactams, quinolones, bacterial infection.


The results of the study of sensitivity to antibacterial drugs in isolates of Salmonella enterica isolated from poultry are shown in the article. Antibacterial sensitivity was determined by disc diffusion to such drugs: ampicillin, cefoperazone, ceftriaxone, ceftazidime, tetracycline, doxycycline, streptomycin, gentamicin, nalidixic acid, chloramphenicol, ciprofloxacin, trimethoprim. Growth retardation zones were interpreted according to the CLSI standard. Among the isolates tested, a significant percentage of isolates resistant to nalidixic acid and ciprofloxacin were found (19 (63.3 %) and 21 (70 %), respectively. A significant number of isolates were also resistant to beta-lactams. In particular, 37 isolates (64.9 %) were resistant to ceftazidime, and 36 (63.1 %) to ceftriaxone. However, ceftriaxone resistance was dominant among S. typhimurium isolates, whereas in Enteritidis this indicator was significantly lower. However, the highest resistance of the studied isolates were shown to the beta-lactam class – cefoperazone (70.17 %). Only 6 isolates (20 %) were sensitive to nalidixic acid but did not detect any isolates sensitive to ciprofloxacin. This is a significant problem because quinolones are used to treat invasive salmonellosis. In this study, 12 (40 %) isolates were sensitive to ampicillin, 9 (30 %) to cefoperazone, 10 (33.3 %) to ceftriaxone and 9 (30 %) to ceftazidime. The lowest number of strains was resistant to trimethoprim 9 (30 %) and chloramphenicol 8 (26.6 %). Unfortunately, the use of the latter is limited due to the possibility of serious side effects. Overall, the group of poultry isolates tested reflects a general upward trend in antibiotic resistance. The findings present new data on resistance and provide prospects for further studies on this aspect of salmonellosis.


Download data is not yet available.


Adhikary, R., Joshi, S., & Ramakrishnan, M. (2013). Salmonella typhimurium meningitis in infancy. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 17(6), 392. doi: 10.4103/0972-5229.123464.

Ahman, J., Matuschek, E., & Kahlmeter, G. (2019). The quality of antimicrobial discs from nine manufacturers-EUCAST evaluations in 2014 and 2017. Clinical Microbiology and Infection, 25(3), 346–352. doi: 10.1016/j.cmi.2018.05.021.

Akinyemi, K. O., Ajoseh, S. O., Iwalokun, B. A., Oyefolu, A. O. B., Fakorede, C. O., Abegunrin, R. O., & Adunmo, O. (2018). Antimicrobial Resistance and Plasmid Profiles of Salmonella enterica Serovars from Different Sources in Lagos, Nigeria. Health, 10(06), 758. doi: 10.4236/health.2018.106058.

Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical Microbiology and Infection, 22(2), 110–121. doi: 10.1016/j.cmi.2015.12.004.

Briggs, C. E., & Fratamico, P. M. (1999). Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimuriumDT104. Antimicrobial agents and chemotherapy, 43(4), 846–849. doi: 10.1128/AAC.43.4.846.

Begum, K., Mannan, S. J., & Ahmed, A. (2017). Antibiotic resistance, plasmids and integron profile of salmonella species isolated from poultry farm and patients. Dhaka University Journal of Pharmaceutical Sciences, 15(2), 209–214. doi: 10.3329/dujps.v15i2.30939.

Bilge, N., Vatansever, L., & SEZER, Ç. (2018). Antibiotic Resistance of Salmonella spp. Isolated from Raw Chicken Wings. Kafkas Üniversitesi Veteriner Fakülte-si Dergisi, 24(3), 431–435. doi: 10.9775/kvfd.2017.19134.

Borges, K. A., Furian, T. Q., Borsoi, A., Moraes, H. L., Salle, C. T., & Nascimento, V. P. (2013). Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in South of Brazil. Pesquisa Veterinaria Brasileira, 33(12), 1416–1422. doi: 10.1590/S0100-736X2013001200004.

Bythwood, T., Soni, V., Lyons, K., Hurley-Bacon, A., Lee, M. D., Hofacre, C., ... & Maurer, J. J. (2019). Emergence of Antimicrobial Resistant Salmonella enterica Typhimurium Colonizing Chickens: The Impact of Plasmids, Genotype, Bacterial Communities and Antibiotic Usage on Resistance. Frontiers in Sustainable Food Systems, 3, 20. doi: 10.3389/ fsufs.2019.00020.

Carattoli, A. (2003). Plasmid-mediated antimicrobial resistance in Salmonella enterica. Current issues in molecular biology, 5(4), 113–122. doi: 10.21775/cimb.005.113.

Casewell, M., Friis, C., Marco, E., McMullin, P., & Phillips, I. (2003). The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of antimicrobial chemotherapy, 52(2), 159–161. doi: 10.1093/jac/dkg313.

Castanon, J. I. R. (2007). History of the use of antibiotic as growth promoters in European poultry feeds. Poultry science, 86(11), 2466–2471. doi: 10.3382/ps.2007-00249.

Centres for Disease Control and Prevention (US) (2013). Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, US Department of Health and Human Services.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2013. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2011. EFSA Journal 2013; 11(5), 3196. doi: 10.2903/j.efsa.2013.3196.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2015. EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA Journal 2015, 13(2), 4036. doi: 10.2903/j.efsa.2015.4036.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2018. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA Journal 2018, 16(2), 5182. doi: 10.2903/j.efsa.2018.5182.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2019. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal 2019, 17(2), 5598. doi: 10.2903/j.efsa.2019.5598.

Emmerson, A. M., & Jones, A. M. (2003). The quinolones: decades of development and use. Journal of Antimicrobial Chemotherapy, 51(suppl_1), 13–20. doi: 10.1093/jac/dkg208.

European Union (2003). Regulation (EC) No. 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off J Eur Union, 50.

Feasey, N. A., Dougan, G., Kingsley, R. A., Heyderman, R. S., & Gordon, M. A. (2012). Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. The Lancet, 379(9835), 2489–2499. doi: 10.1016/S0140-6736(11)61752-2.

Frost, I., Van Boeckel, T. P., Pires, J., Craig, J., & Laxminarayan, R. (2019). Global geographic trends in antimicrobial resistance: the role of international travel. Journal of travel medicine, 26(8), taz036. doi: 10.1093/jtm/taz036.

Gale, A. R., & Wilson, M. (2019). Antibiotic Stewardship in the Patient with Diarrhea: Who Needs Antibiotics? And Which Antibiotics Do I Prescribe?. In Gastrointestinal Emergencies (pp. 339-341). Springer, Cham. doi: 10.1007/978-3-319-98343-1_97.

Garcia-Graells, C., De Keersmaecker, S. C., Vanneste, K., Pochet, B., Vermeersch, K., Roosens, N., ... & Botteldoorn, N. (2018). Detection of plasmid-mediated colistin resistance, mcr-1 and mcr-2 genes, in Salmonella spp. isolated from food at retail in Belgium from 2012 to 2015. Foodborne pathogens and disease, 15(2), 114–117. doi: 10.1089/fpd.2017.2329.

Gay, K., Robicsek, A., Strahilevitz, J., Park, C. H., Jacoby, G., Barrett, T. J., ... & Hooper, D. C. (2006). Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clinical Infectious Diseases, 43(3), 297–304. doi: 10.1086/505397.

Gljebova, K. V., Bobrovyc'ka, I. A., & Majboroda, O. V. (2014). Monitoryng sal'monel'ozu dykoi' ptyci pivdnja Ukrai'ny. Veterynarna medycyna, (99), 83–86 (in Ukrainian).

Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars. WHO collaborating centre for reference and research on Salmonella, 9, 1–166.

Hakanen, A. J., Lindgren, M., Huovinen, P., Jalava, J., Siitonen, A., & Kotilainen, P. (2005). New quinolone resistance phenomenon in Salmonella enterica: nalidixic acid-susceptible isolates with reduced fluoroquinolone susceptibility. Journal of clinical microbiology, 43(11), 5775–5778. doi: 10.1128/JCM.43.11.5775-5778.2005.

Hannan, S., & Sohail, A. A. (2019). Successfully Treated Case of Non-Typhoidal Salmonella Meningitis in an Otherwise Healthy 5 Months Old Infant: A Case Report. Asian Journal of Pediatric Research, 2(3), 1–6. doi: 10.9734/ajpr/2019/v2i330106.

Jaja, I. F., Bhembe, N. L., Green, E., Oguttu, J., & Muchenje, V. (2019). Molecular characterisation of antibiotic-resistant Salmonella enterica isolates recovered from meat in South Africa. Acta tropica, 190, 129–136. doi: 10.1016/j.actatropica.2018.11.003.

Karp, B. E., Campbell, D., Chen, J. C., Folster, J. P., & Friedman, C. R. (2018). Plasmid‐mediated quinolone resistance in human non‐typhoidal Salmonella infections: An emerging public health problem in the United States. Zoonoses and public health, 65(7), 838–849. doi: 10.1111/zph.12507.

Katz, D., Ben-Chetrit, E., Sherer, S. S., Cohen, D., & Muhsen, K. (2019). Correlates of non-typhoidal Salmonella bacteraemia: A case-control study. International Journal of Infectious Diseases, 81, 170–175. doi: 10.1016/j.ijid.2019.01.028.

Keddy, K. H., Sooka, A., Musekiwa, A., Smith, A. M., Ismail, H., Tau, N. P., ... & Haummann, C. (2015). Clinical and microbiological features of Salmonella meningitis in a South African population, 2003–2013. Clinical Infectious Diseases, 61(suppl_4), S272–S282. doi: 10.1093/cid/civ685.

Leekitcharoenphon, P., Hendriksen, R. S., Le Hello, S., Weill, F. X., Baggesen, D. L., Jun, S. R., ... & Aarestrup, F. M. (2016). Global genomic epidemiology of Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol., 82(8), 2516–2526. doi: 10.1128/AEM.03821-15.

Lesher, G. Y., Froelich, E. J., Gruett, M. D., Bailey, J. H., & Brundage, R. P. (1962). 1, 8-Naphthyridine derivatives. A new class of chemotherapeutic agents. Journal of Medicinal Chemistry, 5(5), 1063–1065. doi: 10.1021/jm01240a021.

Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., ... & International Collaboration on Enteric Disease “Burden of Illness” Studies. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical infectious diseases, 50(6), 882–889. doi: 10.1086/650733.

Mahajan, R. K., Khan, S. A., Chandel, D. S., Kumar, N., Hans, C., & Chaudhry, R. (2003). Fatal case of Salmonella enterica subsp. arizonae gastroenteritis in an infant with microcephaly. Journal of clinical microbiology, 41(12), 5830–5832. doi: 10.1128/JCM.41.12.5830-5832.2003.

Martínez-Martínez, L., Pascual, A., & Jacoby, G. A. (1998). Quinolone resistance from a transferable plasmid. The Lancet, 351(9105), 797–799. doi: 10.1016/S0140-6736(97)07322-4.

Nair, D. V., & Johny, A. K. (2019). Salmonella in Poultry Meat Production. In Food Safety in Poultry Meat Production (pp. 1-24). Springer, Cham. doi: 10.1007/978-3-030-05011-5_1.

Ochman, H., Lawrence, J. G., & Groisman, E. A. (2000). Lateral gene transfer and the nature of bacterial innovation. nature, 405(6784), 299. doi: 10.1038/35012500.

Pal, M., Merera, O., Abera, F., Rahman, M. T., & Hazarika, R. A. (2015). Salmonellosis: a major foodborne disease of global significance. Beverage Food World, 42(12), 21–24.

Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., ... & Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of Antimicrobial Chemotherapy, 53(1), 28–52. doi: 10.1093/jac/dkg483.

Piddock, L. J. V., Whale, K., & Wise, R. (1990). Quinolone resistance in salmonella: clinical experience. Quinolone resistance in salmonella: clinical experience, 335(8703), 1459. doi: 10.1016/0140-6736(90)91484-R.

Piddock, L. J. (2002). Fluoroquinolone resistance in Salmonella serovars isolated from humans and food animals. FEMS Microbiology Reviews, 26(1), 3–16. doi: 10.1111/j.1574-6976.2002.tb00596.x.

Piekarska, K., Wołkowicz, T., Zacharczuk, K., Rzeczkowska, M., Chróst, A., Bareja, E., ... & Gierczyński, R. (2015). Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. International journal of antimicrobial agents, 45(3), 238–243. doi: 10.1016/j.ijantimicag.2014.09.019.

Poirel, L., Cattoir, V., & Nordmann, P. (2012). Plasmid-mediated quinolone resistance; interactions between human, animal, and environmental ecologies. Frontiers in microbiology, 3, 24. doi: 10.3389/fmicb.2012.00024.

Rublenko, N. M., Golovko, A. M., & Derybin, О. M. (2018). Detection of virulence genes and plasmid replicons in Salmonella enterica subsp. enterica, which were allocated during 2014–2017 on the territory of Ukraine. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 20(83), 405–410. doi: 10.15421/nvlvet8379.

Rublenko, N. M. (2018). Molecular genetics of salmonella survival and resistance. Scientific journal of veterinary medicine, 2(144), 6–12. doi: 10.33245/2310-4902-2018-144-2-6-12.

Shahunja, K. M., Leung, D. T., Ahmed, T., Bardhan, P. K., Ahmed, D., Qadri, F., ... & Chisti, M. J. (2015). Factors associated with non-typhoidal Salmonella bacteremia versus typhoidal Salmonella bacteremia in patients presenting for care in an urban diarrheal disease hospital in Bangladesh. PLoS neglected tropical diseases, 9(9), e0004066. doi: 10.1371/journal.pntd.0004066.

Shane, A. L., Mody, R. K., Crump, J. A., Tarr, P. I., Steiner, T. S., Kotloff, K., ... & Cantey, J. (2017). 2017 Infectious Diseases Society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea. Clinical Infectious Diseases, 65(12), e45-e80. doi: 10.1093/cid/cix669.

Su, L. H., Chiu, C. H., Chu, C., Wang, M. H., Chia, J. H., & Wu, T. L. (2003). In vivo acquisition of ceftriaxone resistance in Salmonella enterica serotype Anatum. Antimicrobial agents and chemotherapy, 47(2), 563–567. doi: 10.1128/AAC.47.2.563-567.2003.

Su, L. H., Wu, T. L., & Chiu, C. H. (2012). Development of carbapenem resistance during therapy for non‐typhoid Salmonella infection. Clinical Microbiology and Infection, 18(4), E91–E94. doi: 10.1111/j.1469-0691.2012.03767.x.

Szmolka, A., Szabó, M., Kiss, J., Pászti, J., Adrián, E., Olasz, F., & Nagy, B. (2018). Molecular epidemiology of the endemic multiresistance plasmid pSI54/04 of Salmonella Infantis in broiler and human population in Hungary. Food microbiology, 71, 25–31. doi: 10.1016/

Wayne, P. A. (2015). CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. CLSI Document M100-S25, Clinical and Laboratory Standards Institute.

World Health Organization (2014). Antimicrobial resistance: global report on surveillance. World Health Organization.

World Organisation for Animal Health (OIE). Annual reporton antimicrobial agents intended for use in animals, third report, 2018. salmonella-(non-typhoidal).

Abstract views: 91
PDF Downloads: 106
How to Cite
Rublenko, N., & Holovko, A. (2020). Antimicrobial susceptibility of isolates of Salmonella enterica subsp. Enterica isolated in Ukraine during the period of 2014–2017. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97), 58-68.