Poikilocytosis under dogs’ spontaneous babesiosis

Keywords: babesiosis, dog, poikilocytes, acanthocytes, vacuolization, stomatocytes, echinocytes, schizocytes.


The article presents the results of studies of changes in the shape of red blood cells during spontaneous babesiosis in dogs. It was found that in 2019, seasonal outbreaks are caused and characterized by the presence of two waves – spring-summer with a peak in June and autumn with a peak in October. The intensity of parasitemia increases synchronously with the extensity of infestation in the first half of the year(a narrow direct correlation), in the future it falls and does not correlate with outbreaks of animal disease. Clinically, the spring-summer wave of the disease is characterized by an acute-subacute typical course with pronounced classic clinical signs. The autumn wave had a predominantly subacute-atypical course, with the development of severe complications with signs of hepatopathy and acute renal insufficiency, cardiomyopathy and myocarditis, lesions of the nervous system, the development of shock with a significant tendency to decompensation. Changes in the shape of red blood cells are bright and indicative markers of the state of animals on babesiosis. Poikilocytosis was detected in 92.3 % of sick dogs. The most common changes are acanthocytosis and vacuolization of erythrocytes (irreversible forms), which qualitatively assess the degree of damage to vital organs. Echinocytes are reversible forms that appear in the early stages and determine the development of renal and hepatic pathologies. Stomatocytes accompany the development of inflammatory and dystrophic pathologies, qualitatively characterize the degree of hemolytic anemia. Their intensity is synchronous with the extent of the invasion. The appearance of schizocytes is a formidable symptom that is pathognomonic for disseminated intravascular coagulation syndrome. This marker requires immediate use of intensive care. The assessment of qualitative changes in the form of red blood cells, the calculation of the intensity of erythrocyte lesions allows you to determine the severity of the condition of the body of sick dogs, the degree of metabolic disorders, hemolytic anemia, hepatopathy, the severity of intoxication, uremic syndrome, spleen hyperplasia, as well as identify the development of DIC syndrome, kidney failure and shock kidney. Such an assessment is necessary for making timely and adequate decisions regarding therapeutic measures for spontaneous babesiosis of dogs.


Download data is not yet available.


Ayalew, T., & Michelle, A. E. (2004). Schistocytes on the Peripheral Blood Smear. Mayo Clinic Proceedings, 79(6), 809. doi: 10.4065/79.6.809.

Barabino, G. A., Platt, M. O., & Kaul, D. K. (2010). Sickle cell biomechanics. Annu. Rev. Biomed. Eng., 12, 345–367. doi: 10.1146/annurev-bioeng-070909-105339.

Christopher, M. M., Hawkins, M. G., & Burton, A. G. (2014). Poikilocytosis in rabbits: prevalence, type, and association with disease. PloS one, 9(11), e112455. doi: 10.1371/journal.pone.0112455.

Dubova, O. (2016). Shock and DIC-syndrome as a path-ogenetic axis of dogs babesiosis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 18, 2(66), 70–73. doi: 10.15421/nvlvet6615 (in Ukranian).

Dubova, O. A., Zghozinska, O. A., Kovalova, L. O., & Kovalov, P. V. (2019). Splenomehaliia yak uskladnennia za babeziozu sobak. Visnyk PDAA, 2, 126–132. doi: 10.31210/visnyk2019.02.16 (in Ukra-nian).

Dubova, O., & Duboviy, A. (2018). Hepathopathy and nephropathy in the dogs’ babesiosis: pseudohepato-renal syndrome. Scientific Messenger of LNU of Vet-erinary Medicine and Biotechnologies. Series: Veteri-nary Sciences, 20(83), 102–107. doi: 10.15421/nvlvet8320 (in Ukranian).

Geekiyanage, N.M., Balanant, M.A., Sauret, E., Saha, S., Flower, R., Lim, C.T., et al. (2019). A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS one, 14(4), e0215447. doi: 10.1371/journal.pone.0215447.

Guido, S., & Tomaiuolo, G. (2009). Microconfined flow behavior of red blood cells in vitro. C. R. Phys., 10, 751–763. doi: 10.1016/j.crhy.2009.10.002.

Hosseini, S. M., & Feng, J. J. (2012), How malaria para-sites reduce the deformability of infected red blood cells, Biophys. J., 103(1), 1–10. doi: 10.1016/j.bpj.2012.05.026.

Jeican, I. I., Matei, H., Istrate, A., Mironescu, E., & Bâlici, S (2017). Changes observed in erythrocyte cells ex-posed to an alternating current. lujul Med., 90(2), 154–160. doi: 10.15386/cjmed-696.

Lesesve, J., Martin, M., Banasiak, C., Andre-Kerneis, E., Bardet, V., Lusina, D., Kharbach, A., Genevieve, F., & Lecompte, T (2014). Schistocytes in disseminated in-travscular coagulation. International Journal of La-boratory Hematology, 36(4), 439–443. doi: 10.1111/ijlh.12168.

Levi, M. (2018). Disseminated Intravascular Coagulation. In: Hematology (7th Ed.), 2064–2075. doi: 10.1016/B978-0-323-35762-3.00139-6.

McHedlishvili, G., & Maeda, N. (2001). Blood flow struc-ture related to red cell flow: Determinant of blood flu-idity in narrow microvessels. Jpn. J. Physiol., 51(1), 19–30. doi: 10.2170/jjphysiol.51.19.

Moroz, V. V., Chernysh, A. M., Kozlova, E. K., Kirsanova, A. K., Novoderzhkina, I. S., Aleksan-drin, V. V., Borshchegovskaya, P. Yu., Bliznyuk, U. A., & Rysaeva, R. M. (2009). Atomic force microscopy of the structure of red blood cell membranes in acute blood loss and reinfusion. Obshchaya Reanima-tologiya = General Reanimatology, 5(5), 5–15. doi: 10.15360/1813-9779-2009-5-5.

Moroz, V., Novoderzhkina, I., Afanasyev, A., Zarzhetsky, Yu., Ryzhkov, I., Kozlova, E., & Chernysh, A. (2017). Effect of Perftoran on Membrane Nanostructure of Discocyte and Stomatocyte after Acute Blood Loss. General Reanimatology, 13, 32–39. doi: 10.15360/1813-9779-2017-2-32-39.

Owen, J. S., Brown, D., Harry, D., McIntyre, N., Beaven, G., Isenberg, H., & Gratzer, W. (1985). Erythrocyte echinocytosis in liver disease. Role of abnormal plas-ma high density lipoproteins. Journal of Clinical In-vestigation, 76, 2275–2285. doi: 10.1172/JCI112237.

Schetters, T. P. M., Kleuskens, J. A. G. M., Crommert, J., Leeuw, P. W. J., Finizio, A. L., & Gorenflot, A. (2009). Systemic inflammatory responses in dogs experimen-tally infected with Babesia canis; a haematological study. Vet Parasitol., 162(1), 7–15. doi: 10.1016/j.vetpar.2009.02.012.

Tomaiuolo, G. (2014) Biomechanical properties of red blood cells in health and disease towards microfluid-ics. Biomicrofluidics, 8(5), 051501. doi: 10.1063/1.4895755.

Tsui, S. M., Ahmed, R., Amjad, N., Ahmed, I., Yang, J., Manno, F. A., Barman, I., Shih, W. C., & Lau, C. (2020). Single red blood cell analysis reveals elevated hemoglobin in poikilocytes. Journal of biomedical op-tics, 25(1), 1–13. doi: 10.1117/1.JBO.25.1.015004.

Wu, T., & Feng, J. J. (2013). Simulation of malaria-infected red blood cells in microfluidic channels: Pas-sage and blockage, Biomicrofluidics, 7(4), 044115. doi: 10.1063/1.4817959.

Abstract views: 116
PDF Downloads: 113
How to Cite
Dubova, O., Feshchenko, D., Zghozinska, O., Pinsky, O., Budnik, T., & Chala, I. (2020). Poikilocytosis under dogs’ spontaneous babesiosis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97), 118-124. https://doi.org/10.32718/nvlvet9719