Antimicrobial peptides as novel alternatives to antibiotics


Keywords: antimicrobial peptide, applications, swine.

Abstract

In recent years, due to the unreasonable use of antibiotics, bacterial resistance has increased, posing a huge threat to human health and the healthy development of the swine industry. Therefore, it is an urgent to look for antibiotic alternatives. Antimicrobial peptides are a class of small molecule peptides, which are the body's first line of defense against the invasion of pathogenic microorganisms. They have small molecular weight, good water solubility, and not easy to produce drug resistance. Therefore, antimicrobial peptides are considered as one of the best alternatives to antibiotics. This review focuses on the mechanism of action of antimicrobial peptides, especially improve performance, improve intestinal inflammation and nutrient digestibility, regulate the intestinal microbiota and enhance the immune function of swine. Overall, AMPs have great potential for application  as an alternative to antibiotics in swine industry.

Downloads

Download data is not yet available.

References

Burkey, T. E., Skjolaas, K. A., & Minton, J. E. (2009). Board-invited review: porcine mucosal immunity of the gastro intestinal tract. J Anim Sci., 87(4), 1493–1501. doi: 10.2527/jas.2008-1330.

Cederlund, A., Gudmundsson, G. H., & Agerberth, B. (2011). Antimicrobial peptides important in innate immunity. FEBS J., 278(20), 3942–3951. doi: 10.1111/j.1742-4658.2011.08302.x.

Choi, S. C., Ingale, S. L., Kim, J. S., Park, Y. K., Kwon, I. K., & Chae, B. J. (2013). An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poult Sci., 54(6), 738–746. doi: 10.1080/00071668.2013.838746.

Cutler, S. A., Lonergan, S. M., Cornick, N., Johnson, A. K., & Stahl, C. H. (2007). Dietary inclusion of colicin e1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrob Agents Chemother, 51(11), 3830–3835. doi: 10.1128%2FAAC.00360-07.

Diana, A., Boyle, L. A., Leonard, F. C., Carroll, C., Sheehan, E., Murphy, D., & Manzanilla, E. G. (2019). Removing prophylactic antibiotics from pig feed: how does it affect their performance and health? BMC Vet Res., 15(1), 67. doi: 10.1186/s12917-019-1808-x.

Domenyuk, V., Loskutov, A., Johnston, S. A., & Diehnelt, C. W. (2013). A technology for developing synbodies with antibacterial activity. PLoS One, 8(1), e54162. doi: 10.1371%2Fjournal.pone.0054162.

Forkus, B., Ritter, S., Vlysidis, M., Geldart, K., & Kaznessis, Y. N. (2017). Antimicrobial Probiotics Reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci Rep, 7, 40695. doi: 10.1038/srep40695.

Ramamourthy, G., Park, J., Seo, C., Vogel, H. J., & Park, Y. (2020). Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against. Microorganisms, 8, 758. doi: 10.3390/microorganisms8050758.

Hernandez-Gordillo, V., Geisler, I., & Chmielewski, J. (2014). Dimeric unnatural polyproline-rich peptides with enhanced antibacterial activity. Bioorg Med Chem Lett, 24(2), 556–559. doi: 10.1016/j.bmcl.2013.12.023.

Hurdle, J. G., O'Neill, A. J., Chopra, I., & Lee, R. E. (2011). Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol, 9(1), 62–75. doi: 10.1038/nrmicro2474.

Choi, S. C., Ingale, S. L., Kim, J. S., Park, Y. K., Kwon, I. K., & Chae, B. J. (2013). Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora, and intestinal morphology of broilers. Animal Feedence & Technology, 185(1-2), 78–84. doi: 10.1016/j.anifeedsci.2013.07.005.

Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19(3), 491–511. doi: 10.1128/cmr.00056-05.

Jin, Z., Yang, Y. X., Choi, J. Y., Shinde, P. L., Yoon, S. Y., Hahn, T. W., Lim, H. T., Park, Y., Hahm, K. S., Joo, J. W., & Chae, B. J. (2008). Potato (Solanum tuberosum L. cv. Gogu valley) protein as a novel antimicrobial agent in weanling pigs. J Anim Sci., 86(7), 1562–1572. doi: 10.2527/jas.2007-0414.

Jindal, H. M., Zandi, K., Ong, K. C., Velayuthan, R. D., Rasid, S. M., Samudi, R. C., & Sekaran, S. D. (2017). Mechanisms of action and in vivo antibacterial efficacy assessment of five novel hybrid peptides derived from Indolicidin and Ranalexin against Streptococcus pneumoniae. PeerJ., 5, e3887. doi: 10.7717/peerj.3887.

Ko, S. J., Kim, M. K., Bang, J. K., Seo, C. H., Luchian, T., & Park, Y. (2017). Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria. Sci Rep., 7(1), 16580. doi: 10.1038/s41598-017-16784-6.

Levy, O. (2000). Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood, 96(8), 2664. doi: 10.1182/blood.V96.8.2664.

Pérez-Duran, F., Acosta-Torres, L. S., Serrano-Díaz, P. N., Toscano-Torres, I. A., Olivo-Zepeda, I. B., García-Caxin, E., & Nuñez-Anita, R. E. (2020). Toxicity and antimicrobial effect of silver nanoparticles in swine sperms. Systems biology in reproductive medicine, 1–9. doi: 10.1080/19396368.2020.1754962.

Pandey, B. K., Srivastava, S., Singh, M., & Ghosh, J. K. (2011). Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Biochem J., 436(3), 609–620. doi: 10.1042/bj20110056.

Ranjit, D. K., Rideout, M. C., Nefzi, A., Ostresh, J. M., Pinilla, C., & Segall, A. M. (2010). Small molecule functional analogs of peptides that inhibit lambda site-specific recombination and bind Holliday junctions. Bioorg Med Chem Lett, 20(15), 4531–4534. doi: 10.1016/j.bmcl.2010.06.029.

Ren, Z. H., Yuan, W., Deng, H. D., Deng, J. L., Dan, Q. X., Jin, H. T., Tian, C. L., Peng, X., Liang, Z., Gao, S., Xu, S. H., Li, G., & Hu, Y. (2015). Effects of antibacterial peptide on cellular immunity in weaned piglets. J Anim Sci., 93(1), 127–134. doi: 10.2527/jas.2014-7933.

Shan, T., Wang, Y., Wang, Y., Liu, J., & Xu, Z. (2007). Effect of dietary lactoferrin on the immune functions and serum iron level of weanling piglets. J Anim Sci., 85(9), 2140–2146. doi: 10.2527/jas.2006-754.

Shi, J., Zhang, P., Xu, M. M., Fang, Z., Lin, Y., Che, L., Feng, B., Li, J., Li, G., Wu D., & Xu, S. (2018). Effects of composite antimicrobial peptide on growth performance and health in weaned piglets. Anim Sci J., 89(2), 397–403. doi: 10.1111/asj.12933.

Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., Chu, W., Kong, X., Li, L., Geng, M., & Tu, Q. (2009). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br J Nutr. 101(7), 998–1005. doi: 10.1017/s0007114508055633.

Veldhuizen, E. J., Schneider, V. A., Agustiandari, H., van Dijk, A., Tjeerdsma-van, B. J., Bikker, F. J., & Haagsman, H. P. (2014). Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One, 9(4), e95939. doi: 10.1371/journal.pone.0095939.

Wang, J. H., Wu, C. C., & Feng, J. (2011). Effect of dietary antibacterial peptide and zinc-methionine on performance and serum biochemical parameters in piglets. Czech Journal of Animal Science, 56(1), 30–36. doi: 10.17221/341/2009-CJAS.

Wang, L., Zhao, X., Xia, X., Zhu, C., Zhang, H., Qin, W., Xu, Y., Hang, B., Sun, Y., Chen, S., Jiang, J., Zhang, G., & Hu, J. (2019). Inhibitory Effects of Antimicrobial Peptide JH-3 on Salmonella enterica Serovar Typhimurium Strain CVCC541 Infection-Induced Inflammatory Cytokine Release and Apoptosis in RAW264.7 Cells. Molecules, 24(3), 596. doi: 10.3390/molecules24030596.

Wang, S., Zeng, X., Yang, Q., & Qiao, S. (2016). Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. International Journal of Molecular Sciences, 17(5), 603. doi: 10.3390/ijms17050603.

Wang, T., Teng, K., Liu, Y., Shi, W., Zhang, J., Dong, E., Zhang, X., Tao, Y., &Zhong, J. (2019). Lactobacillus plantarum PFM 105 Promotes Intestinal Development Through Modulation of Gut Microbiota in Weaning Piglets. Front Microbiol, 10, 90. doi: 10.3389/fmicb.2019.00090.

Wang, Y. Z., Shan, T. Z., Xu, Z. R., Feng, J., & Wang, Z. Q. (2007). Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Animal Feed Science & Technology, 135(3-4), 263–272. https://www.sciencedirect.com/science/article/pii/S0377840106003026?via%3Dihub.

Wu, S., Zhang, F., Huang, Z., Liu, H., Xie, C., Zhang, J., Thacker, P. A., & Qiao, S. (2012). Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides. 35(2), 225–230. doi: 10.1016/j.peptides.2012.03.030.

Xia, X., Cheng, L., Zhang, S., Wang, L., & Hu, J. (2018). The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie Van Leeuwenhoek, 111(1), 5–26. doi: 10.1007/s10482-017-0929-0.

Xiao, H., Shao, F., Wu, M., Ren, W., Xiong, X., Tan, B., & Yin, Y. (2015). The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol, 6(1), 19. doi: 10.1186/s40104-015-0018-z.

Yi, H., Zhang, L., Gan, Z., Xiong, H., Yu, C., Du, H., & Wang, Y. (2016). High therapeutic efficacy of Cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine. Sci Rep., 6(1), 25679. doi: 10.1038/srep25679.

Yoon, J. H., Ingale, S. L., Kim, J. S., Kim, K. H., Lee, S. H., Park, Y. K., Lee, S. C., Kwon, I. K., & Chae, B. J. (2013). Effects of dietary supplementation of synthetic antimicrobial peptide-A3 and P5 on growth performance, apparent total tract digestibility of nutrients, fecal and intestinal microflora and intestinal morphology in weanling pigs. Journal of the Science of Food & Agriculture, 93(3), 587–592. doi: 10.1016/j.livsci.2013.10.025.

Yu, H. T., Ding, X. L., Li, N., Zhang, X. Y., Zeng, X. F., Wang, S., Liu, H. B., Wang, Y. M., Jia, H. M., & Qiao, S. Y. (2017). Dietary supplemented antimicrobial peptide microcin J25 improves the growth performance, apparent total tract digestibility, fecal microbiota, and intestinal barrier function of weaned pigs. J Anim Sci., 95(11), 5064–5076. doi: 10.2527/jas2017.1494.

Yuan, W., Jin, H. T., Ren, Z. H., Deng, J. L., Zuo, Z. C., Wang, Y., Deng, H. D., & Deng, Y. T. (2015) Effects of antibacterial peptide on humoral immunity in weaned piglets. Food and Agricultural Immunology, 93(1), 127–134. doi: 10.1080/09540105.2015.1007448.

Zhang, C., & Yang, M. (2020). The Role and Potential Application of Antimicrobial Peptides in Autoimmune Diseases. Frontiers in immunology, 11, 859. doi: 10.3389/fimmu.2020.00859.

Zhai, Z., Ni, X., Jin, C., Ren, W., Li, J., Deng, J., Deng, B., & Yin, Y. (2018). Cecropin A Modulates Tight Junction-Related Protein Expression and Enhances the Barrier Function of Porcine Intestinal Epithelial Cells by Suppressing the MEK/ERK Pathway. Int J Mol Sci, 19(7), 1941. doi: 10.3390/ijms19071941

Abstract views: 23
PDF Downloads: 10
Published
2020-08-22
How to Cite
Zhao, X., Fotina, H., Wang, L., & Hu, J. (2020). Antimicrobial peptides as novel alternatives to antibiotics. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(98), 74-78. https://doi.org/10.32718/nvlvet9813