Histogical structure of the thyroid gland in rabbits with different types of autonomous tonus


Keywords: parasympathicotonic rabbits, normotonic rabbits, sympathicotonic rabbits, thyrocytes.

Abstract

The research was aimed at investigating the influence of the aggregated tonus of sympathetic and parasympathetic centers on the rabbit’s thyroid gland morphology. For this purpose, the rabbit males (Oryctolagus cuniculus (Linnaeus, 1758)) of Blanc de Termond breed at the age of four months, passed an electrocardiographic and variation pulsometry study. According to the results, the animals were divided into three groups: rabbits with sympathicotonia (18 animals), rabbits with normotonia (5 animals) and rabbits with parasympathicotonia (3 animals). After euthanasia, the fragments of the thyroid gland were taken out, fixed in Bouin’s solution and embedded in paraffin blocks. Histological sections were prepared from the paraffin blocks and later stained with hematoxylin and eosin, as well as Gabu-Diban’s aldehyde fuchsin and Heidenhain’s azan. Morphometric study of follicles and cells of the gland was performed using these histopreparations. Based on the obtained data, the indices of gland activity were calculated, i.e. Brown index and the follicle-colloid index. At the same time, it was established that morphofunctional parameters of the thyroid gland depend on the typological features of the autonomous tonus. This is reflected in the thickness of the capsule, the amount of adipose tissue, the size and density of the follicles’ placement, the height of the thyrocytes and the ratio between the areas of their nuclei and the cytoplasm. Rabbits with parasympathicotonia account for the higher values of half (7 from 14) of the studied parameters, while their combination suggests the functional activity of the thyroid gland of the animals in this group is higher compared to the other groups of rabbits. Also, rabbits with parasympathicotonia have a larger body weight. For normotonic and sympatheticontic rabbits, the functional activity of the thyroid gland as well as the body weight is lower and approximately of the same intensity. The existence of correlation between the separate indicators was investigated, the character of which is also related to the type of the autonomous tonus.

Downloads

Download data is not yet available.

References

Abdelatif, A. M., & Saeed, I. H. (2009). Effect of altered thyroid status in the domestic rabbit (lepus cuniculus) on thermoregulation, heart rate and immune responses. Global Veterinaria, 3(6), 447–456. URL: https://www.semanticscholar.org/paper/Effect-of-altered-thyroid-status-in-the-domestic-on-Abdelatif-Saeed/8e32b0992bddf96e5fe668498347f87d31f172bf.

Alcaraz, M., Solano, F., Vicente, V., & Canteras, M. (2003). Effect of radiation on thyroid peroxidase activity in rabbit. Radiobiologia: Revista electronica, 3(1), 59–62.

Al-Mustawfi, N. S., Al-Azawi, T. S., & Mohammed, I. F. R. (2011). Effect of laser treatment on thyroid gland hormones in female rabbits. Iraqi Journal of Veterinary Sciences, 25(2), 61–64. doi: 10.33899/ijvs.2011.5644.

Baevskij, R. M., Kirilov, O. I., & Kleczkin, S. Z. (1984). Matematicheskij analiz serdechnogo ritma pri stresse [Mathematical analysis of heart rate under stress]. Nauka, Moscow (in Russian).

Balasundaratn, K., & Mookkappan, M. (2000). Histomorphology of the thyroid gland in the domestic fowl (Gallus domesticus). Journal of Veterinary and Animal Sciences, 31, 28–31.

Bessalova, E. Y. (2012). Stroenie shhitovidnoj zhelezy belykh krys pri vvedenii ksenogennoj spinnomozgovoj zhidkosti posle nastupleniya polovogo sozrevaniya [The structure of the thyroid gland of white rats with the introduction of xenogeneic cerebrospinal fluid after the onset of puberty]. Tavricheskij mediko-biologicheskij vestnik, 4(60), 68–69 (in Russian).

Borges, M. F., Modolo, I. M. B. B., Modolo, R. G. P., Sil-va, L. C., Mayumi, S. L., Tiveron, R. C., Scandiuzzi, D., & Lima, M. A. (2014). Hyperthyroidism due to papillary thyroid carcinoma associated with ductal breast carcinoma. Case Reports in Clinical Medicine, 3(8), 479–486. doi: 10.4236/crcm.2014.38105.

Coll, S. A. (2014). Anatomical and histological study of thyroid gland in female local donkeys (Eqws africanus asinus) at Basrah city. Al-Qadisiyah Journal of Veterinary Medicine Sciences, 13(1), 85–87. doi: 10.29079/vol13iss1art283.

Davis, J., & Davis, B. S. (1954). The annual gonad and thyroid cycles of the english sparrow in southern california. The Condor, 6, 328–345. doi: 10.2307/1365019.

El-Desouki, N. I., Afifi, D. F., El-Refaiy, A. I., & Talaat, H. (2014). Age-related changes in histological and cytoskeletal intermediate filaments of rabbits thyroid glands and the prophylactic role of vitamin E. Global Veterinaria, 13(4), 511–519. doi: 10.5829/idosi.gv.2014.13.04.8625.

Enemali, F. U., Hambolu, J. O., Alawa, J. N., & Anosike, I. V. (2016). Gross Anatomical, Histological and Histo-chemical Studies of Thyroid Glands of African Giant Rat (Cricetomys gambianusWaterhouse, 1840). IOSR Journal of Pharmacy and Biological Sciences, 11(4), 40–43. doi: 10.9790/3008-1104024043.

Falin, L. I. (1961). Al'degid-fuksin i ego primenenie v gistohimii [Aldehyde-fuchsine and its use in histo-chemistry]. Arkhiv anatomii, gistologii i embriologii, 5, 85–88 (in Russian).

Fernandez-Santos, J. M., Morillo-Bernal, J., Garcia-Marin, R., Utrilla, J. C., & Martin-Lacave, I. (2012). Paracrine regulation of thyroid-hormone synthesis by c cells. Thyroid hormone. IntechOpen. doi: 10.5772/46178.

Firdous, A. D., Lucy, K. M., & Chungath, J. J. (2012). Comparison of thyroid gland parameters with body weight and age in kuttanad ducks during postnatal period. Journal of Veterinary Medicine and Animal Sciences, 43, 71–74. URL: https://journals.cvaslibrary. com/1_43_17.pdf.

Firdous, D., & Karalathukaran, L. (2013). Epithelial diversification of thyroid gland in kuttanad duck (anas platyrhynchos domesticus) – a postnatal study. British Journal of Poultry Sciences, 2(1), 07–10. doi: 10.5829/idosi.bjps.2013.2.1.73154.

Forhead, A. J., & Fowden, A. L. (2014). Thyroid hormones in fetal growth and prepartum maturation. Journal of Endocrinology, 221(3), 87–103. doi: 10.1530/JOE-14-0025.

Gachkar, S., Nock, S., Geissler, C., Oelkrug, R., Johann, K., Resch, J., Rahman, A., Arner, A., Kirchner, H., & Mit-tag, J. (2019). Aortic effects of thyroid hormone in male mice. Journal of Molecular Endocrinology, 62(3), 91–99. doi: 10.1530/JME-18-0217.

Gao, Y., Lee, W. M., & Cheng, C. Y. (2014). Thyroid hormone function in the rat testis. Frontiers in Endo-crinology, 5, 188. doi: 10.3389/fendo.2014.00188.

Gibbons, P. M., Garner, M. M., & Kiupel, M. (2012). Mor-phological and immunohistochemical characteriza-tion of spontaneous thyroid gland neoplasms in guin-ea pigs (Cavia porcellus). Veterinary Pathology, 50(2), 334–342. doi: 10.1177/0300985812447828.

Hmelnitskiy, O. K. (1998). Schitovidnaya zheleza kak ob'ekt morfometricheskogo issledovaniya [Thyroid gland as an object of morphometric research]. Arhiv patologii, 60(4), 47–49 (in Russian).

Igbokwe, C. O. (2010). Gross and microscopic anatomy of thyroid gland of the wild African grasscutter (Thryonomys swinderianus, Temminck) in Southeast Nigeria. European Journal of Anatomy, 14(1), 5–10. URL: http://eurjanat.com/web/paper.php?id=100002ci.

Johansson, E., Andersson, L., Örnros, J., Carlsson, T., Ingeson-Carlsson, C., Liang, S., Dahlberg, J., Jansson, S., Parrillo, L., Zoppoli, P., Barila, G. O., Altschuler, D. L., Padula, D., Lickert, H., Fagman, H., & Nilsson, M. (2015). Revising the embryonic origin of thyroid C cells in mice and humans. Development, 142(20), 3519–3528. doi: 10.1242/dev.126581.

Jost, А. (1954). Hormonal factors in the development of the fetus. Cold Spring Harbor Symposia on Quantitative Biology, 19, 167–181. doi: 10.1101/SQB.1954.019.01.023.

Kachalka, O. V. (1986). Prostranstvennaya organizacziya follikulov shhitovidnoj zhelezy u novorozhdyennykh detej [Spatial organization of thyroid follicles in new-borns]. Arkhiv anatomii, gistologii i embriologii, 90(5), 63–68 (in Russian).

Krassas, G. E., Poppe, K., & Glinoer, D. (2010). Thyroid function and human reproductive health. Endocrine Reviews, 31(5), 702–755. doi: 10.1210/er.2009-0041.

Lee, J., Yi, S., Kang, Y. E., Kim, H.-W., Joung, K. H., Sul, H. J., Kim, K. S., & Shong, M. (2016). Morphological and functional changes in the thyroid follicles of the aged murine and humans. Journal of Pathology and Translational Medicine, 50(6), 426–435. doi: 10.4132/jptm.2016.07.19.

Moghanlo, M. D., & Mohammadpour, A. A. (2019). Anatomy and histomorphology of thyroid, parathyroid and ultimobranchial glands in Guinea fowl (Numida meleagris). Comparative Clinical Pathology, 28(1), 225–231. doi: 10.1007/s00580-018-2819-x.

Mulisch, M., & Welsch, U. (2010). Mikroskopische technik. Spektrum Akademischer.

Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94(2), 355–382. doi: 10.1152/ physrev.00030.2013.

Onwuaso, I. C., Nwagbo, E. D., & Umar, M. B. (2015). Ultrastructure of the thyroid gland in adult West African dwarf goat (Capra hircus). International Journal of Morphology, 33(2), 532–537. doi: 10.4067/S0717-95022015000200020.

Ortiga-Carvalho, T. M., Chiamolera, M. I., Pazos-Moura, C. C., & Wondisford, F. E. (2016). Hypothalamus-pituitary-thyroid axis. Comprehensive Physiology, 6(3), 1387–1428. doi: 10.1002/cphy.c150027.

Parchami, A., & Fatahian Dehkordi, R. F. (2012). Histological structure of the thyroid gland in duck: a light and electron microscopic study. World Applied Sciences Journal, 16(2), 198–201. doi: 10.5281/zenodo.1057217.

Parchami, A., & Fatahian Dehkordi, R. F. (2012). Sex differences in thyroid gland structure of rabbits. European Journal of Applied Sciences, 4(6), 245–248. doi: 10.5281/zenodo.1054733.

Sokolowska, J., Berczynska, J., Poweska, A., Rygiel, D., Olbrych, K., & Urbanska, K. (2018). Immunohisto-chemical characteristic of C cells in European bison thyroid gland. Folia Histochemica et Cytobiologica, 56(4), 222–230. doi: 10.5603/FHC.a2018.0024.

Sugiyama, S. (1954). Studies of the histogenesis of the thyroid gland of the guinea pig. I. The thyroid cells (follicle cells and parafollicular cells). The anatomical record, 120(2), 363–377. doi: 10.1002/ar.1091200202.

Sugiyama, S., & Yagizawa, T. (1951). On the postnatal histogenesis of the thyroid gland of the rabbit. Okajimas Folia Anatomica Japonica, 23(2), 67–79. doi: 10.2535/ofaj1936.23.2_67.

Vojtkevich, A. A., & Zenzerov, V. S. (1968). Submikroskopicheskiye osnovy sekretirovaniya shhitovidnoj zhelezy [Submicroscopic basis of thyroid secretion]. Arkhiv anatomii, gistologii i embriologii, 55(10), 21–29 (in Russian).

Yang, J., Yi, N., Zhang, J., He, W., He, D., Wu, W., Xu, S., Li, F., Fan, G., Zhu, X., Xue, Z., & Zhou, W. (2018). Generation and characterization of a hypothyroidism rat model with truncated thyroid stimulating hormone receptor. Scientific Reports, 8, 4004. doi: 10.1038/s41598-018-22405-7.

Zakrevska, M. V., & Tybinka, A. M. (2019). Peculiarities of microstructure of the suprarenal glands of rabbits with different types of autonomic tone. Regulatory Mechanisms in Biosystems, 10(4), 415–421. doi: 10.15421/021962.

Zhedenov, V. N. (1987). Anatomiya krolika [Rabbit anatomy]. Sovetskaya nauka, Moskva (in Russian).

Abstract views: 14
PDF Downloads: 9
Published
2020-08-22
How to Cite
Zakrevska, M., & Tybinka, A. (2020). Histogical structure of the thyroid gland in rabbits with different types of autonomous tonus. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(98), 119-127. https://doi.org/10.32718/nvlvet9821