Application of biochemical typing in veterinary medicine in bee enterobacterioses to determine Klebsiella Pneumoniae

Keywords: Klebsiella pneumoniae, bee colonies, laboratory diagnostics, biochemical typing


The article presents laboratory diagnostics (in vitro), namely, identification of pure culture of pathogenic bacteria of Klebsiella Pneumoniae species in case of enterobacteriosis in bees in winter-spring and summer-autumn times. The purpose of the study was the biochemical typification of bacteria of the species Klebsiella Pneumoniae with humane medicine methods, that isolated in the case of dysbacteriosis of bees which have a characteristic symptomatic complex of a decrease in the strength of bee families, which leads to a decrease in the resistance of the bee family, their diarrhea, crawling, and then swarming or death of bees. Contamination of beehive frames and walls of beehive by fecation leads to sharp deterioration of the apiary's veterinary and sanitary condition and significant economic damage for beekeepers. Pure culture of pathogenic bacteria served as an object for experiment. The Family of the bacteria was established earlier – Enterobacteriaceae, and was confirmed by Zhytomyr Regional State Laboratory of the State Service of Ukraine for Food Safety and Consumer Protection. Laboratory diagnostics of dysbiosis in bees caused by enterobacteria was performed in such a sequence: 1. Sowing of pathological material taken from sick bees on selective nutrient media for enterobacteria and extraction of pure culture; 2. Microscopy of typical colonies; 3. Determination of bacteria genus; 4. Determination of bacteria motor activity: 5. Urease test; 6. Indole test; 7. Phenyalaalanine test; 8. Study of basic enzymatic properties of bacteria. In a series of laboratory biochemical studies of pure culture microorganisms isolated from mixed culture from diseased bees the isolated bacterial strain belongs to the Family Enterobacteriaceae, Genus Klebsiella, Species Klebsiella pneumoniae. The novelty of the application of the algorithm for determining the species of Klebsiella pneumoniae enterobacteriae allows to diagnose dysbacterioses in winter-spring and summer-autumn times clearly and economically. The isolated Klebsiella pneumoniae bacteria serve as experimental cultures for testing drugs of various directions and actions in laboratory conditions and are kept at the Department of Microbiology, Pharmacology and Epizootology, Faculty of Veterinary Medicine of Polissya National University (formerly Zhytomyr National Agroecological University). Further application of complex diagnostics of enterobacteriosis of bees, including methods of biochemical typification, will allow to expand etiological factors of bee family collapse.


Download data is not yet available.


Bidewell, C. A., Williamson, S. M., Rogers, J., Tang, Y., Ellis, R. J., Petrovska, L., & Abuоun, M. (2018). Emer-gence of Klebsiella pneumoniae subspecies pneu-moniae as a cause of septicaemia in pigs in England. PloS one, 13(2). doi: 10.1371/journal.pone.0191958.

Catalán-Nájera, J. C., Garza-Ramos, U., & Barrios-Camacho, H. (2017). Hypervirulence and hypermu-coviscosity: two different but complementary Klebsiella spp. phenotypes? Virulence, 8(7), 1111–1123. doi: 10.1080/21505594.2017.1317412.

Chang, M. H., Chen, G. J., & Lo, D. Y. (2019). Chromo-somal locations of mcr-1 in Klebsiella pneumoniae and Enterobacter cloacae from dogs. Taiwan Veteri-nary Journal, 45(03), 79–84. doi: 10.1142/S168264851972003X.

Chechotkina, U. E., Evteeva, N. I., Rechkin, A. I., & Ra-daev, A. A. (2011) Enterobacterium as part of the mi-croflora of the digestive system of honey bees in dif-ferent seasons. N.I. Lobachevsky Bulletin of Nizhny Novgorod University, 2–2, 149–153 (in Russian).

Chong, Y., Shimoda, S., & Shimono, N. (2018). Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherich-ia coli and Klebsiella pneumoniae. Infection, Genetics and Evolution, 61, 185–188. doi: 10.1016/j.meegid.2018.04.005.

Cornman, R. S., Tarpy, D. R., Chen, Y., Jeffreys, L., Lopez, D., Pettis, J. S., & Evans, J. D. (2012). Pathogen webs in collapsing honey bee colonies. PLoS one, 7(8). doi: 10.1371/journal.pone.0043562.

Cox-Foster, D. L., Conlan, S., Holmes, E. C., Palacios, G., Evans, J. D., Moran, N. A., Quan, P. L., Briese, T., Hornig, M., Geiser, D. M., Martinson, V., van En-gelsdorp, D., Kalkstein, A. L., Drysdale, A., Hui, J., Zhai, J., Cui, L., Hutchison, S. K., Simons, J. F., Eg-holm, M., Pettis, J. S., & Lipkin, W. I. (2007). A meta-genomic survey of microbes in honey bee colony col-lapse disorder. Science, 318, 283–287. doi: 10.1126/science.1146498.

Evans, J. D., & Schwarz, R. S. (2011). Bees brought to their knees: microbes affecting honey bee health. Trends in microbiology, 19(12), 614–620. doi: 10.1016/j.tim.2011.09.003.

Galatyuk, O., Romanіshіna, T., Lakhman, A., Lysenko, O., & Shimanska, V. (2020). Stiykistʹ patohennykh enterobakteriy bdzhil do eksperymentalʹnoho yodo-vmisnoho dezinfektantu “Yodis Dez № 2”, Naukovi horyzonty, 1(86), 71–78. doi: 10.33249/2663-2144-2020-86-1-71-78 (in Ukrainian).

Genersch, E., von der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Bu¨chler, R., Berg, S., Ritter, W., Mühlen, W., Gisder, S., Meixner, M., Liebig, G., & Rosenkranz, P. (2010). The German bee monitoring project: a long term study to understand periodically high winter loss-es of honey bee colonies. Apidologie, 41(3), 332–352. doi: 10.1051/apido/2010014.

Glenny, W., Cavigli, I., Daughenbaugh, K. F., Radford, R., Kegley, S. E., & Flenniken, M. L. (2017). Honey bee (Apis mellifera) colony health and pathogen composi-tion in migratory beekeeping operations involved in California almond pollination. PloS one, 12(8). doi: 10.1371/journal.pone.0182814.

He, T., Wang, Y., Sun, L., Pang, M., Zhang, L., & Wang, R. (2016). Occurrence and characterization of bla NDM-5-positive Klebsiella pneumoniae isolates from dairy cows in Jiangsu, China. Journal of Antimicrobial Chemotherapy, 72(1), 90–94. doi: 10.1093/jac/dkw357.

Lee, K. V., Steinhauer, N., Rennich, K., Wilson, M. E., Tarpy, D. R., Caron, D. M., Rose R, Delaplane, K. S., Baylis, K., Lengerich, E. J., Pettis, J., Skinner, J. A., Wilkes, J. T., Sagili, R., & van Engelsdorp, D. (2015). A national survey of managed honey bee 2013–2014 annual colony losses in the USA. Apidologie, 46, 292–305. doi: 10.1007/s13592-015-0356-z.

Łopieńska-Biernat, E., Sokół, R., Michalczyk, M., Żółtowska, K., & Stryiński, R. (2017). Biochemical status of feral honey bees (Apis mellifera) infested with various pathogens, Journal of Apicultural Re-search, 56(5), 606–615, doi: 10.1080/00218839.2017.1343020.

Marievskiy, V. F. (2011). Medical Microbiology, Virology and Immunology: A Textbook for Students of Higher Medical Education (4), Vinnytsia, New book (in Ukrainian).

Miró, E., Grünbaum, F., Gómez, L., Rivera, A., Mirelis, B., Coll, P., & Navarro, F. (2013). Characterization of aminoglycoside-modifying enzymes in enterobacteri-aceae clinical strains and characterization of the plasmids implicated in their diffusion. Mi-crob.DrugResist, 19(2), 94–99. doi: 10.1089/mdr.2012.0125.

Oliva, A., Mascellino, M. T., Cipolla, A., D’Abramo, A., De Rosa, A., Savinelli, S., RosaCiardi, M., Mastroianni, M. C., & Vullo, V. (2015). Therapeutic strategy for pandrug-resistant Klebsiella pneumoniae severe infections: short-course treatment with colistin increases the in vivo and in vitro activity of double carbapenem regimen. International Journal of Infec-tious Diseases, 33, 132–134. doi: 10.1016/j.ijid.2015.01.011.

Prokesch, B. C., Tekippe, M., Kim, J., Raj, P., TeKippe, E. M., & Greenberg, D. E. (2016). Primary osteomyelitis caused by hypervirulent Klebsiella pneumoniae. The Lancet Infectious Diseases, 16(9), 190–195. doi: 10.1016/S1473-3099(16)30021-4.

Pulcherovskaya, L. P., Vasilev, D. A., & Zolotuhin, S. N. (2017). Isolation of the genus Citrobacter bacteria. Bulletin of the Ulyanovsk State Agricultural Acade-my, 3(39), 83–87. doi: 10.18286/1816-4501-2017-3-83-87.

Ravoet, J., Maharramov, J., Meeus, I., De Smet, L., Wenseleers, T., Smagghe, G., & de Graaf, D. C. (2013). Comprehensive Bee Pathogen Screening in Belgium Reveals Crithidia mellificae as a New Contributory Factor to Winter Mortality. Plos One, 8. doi: 10.1371/journal.pone.0072443.

Ripabelli, G., Tamburro, M., Guerrizio, G., Fanelli, I., Flocco, R., Scutellà, M., & Sammarco, M. L. (2018). Tracking multidrug-resistant Klebsiella pneumoniae from an Italian hospital: molecular epidemiology and surveillance by PFGE, RAPD and PCR-based resistance genes prevalence. Current microbiology, 75(8), 977–987. doi: 10.1007/s00284-018-1475-3.

Rivera, A., Cedillo, L., Perez, J., Hernandez, F., Romero, O., & Rodriguez, N. (2018). Isolation of Enterobacte-ria and Spiroplasmas from Apis mellifera. Journal of Entomology and Zoology Studies, 6(3), 900–902.

Runckel, C., Flenniken, M. L., Engel, J. C., Ruby, J. G., Ganem, D., Andino, R., & DeRisi, J. L. (2011). Tem-poral analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS One, 6. doi: 10.1371/journal.pone.0020656.

Seeley, T. D., Tarpy, D. R., Griffin, S. R., Carcione, A., Delaney, D. A. (2015). A survivor population of wild colonies of European honey bees in the northeastern United States: Investigating its genetic structure. Apidologie, 46, 654–666. doi: 10.1007/s13592-015-0355-0.

Seitz, N., Traynor, K. S., Steinhauer, N., Rennich, K., Wil-son, M. E., Ellis, J. D., Rose, R. L., Tarpy, D. R.., Sagili, R. R., Caron, D. M., Delaplane, K. S., Rangel, Ju. K., Lee, K. M., Baylis, K. T., Wilkes, J. T., Skinner, J., Pettis, J. S., & Engelsdorp, D. S. (2016). A national survey of managed honey bee 2014–2015 annual colony losses in the USA. Journal of Apicultural Re-search, 54, 292–304. doi: 10.1080/00218839.2016.1153294.

Serdyuchenko, I. V. (2017). Quantitative evaluation of the digestive tract microflora of the bees before and after wintering, 2, 286–289 (in Russian).

Sonnevend, Á., Ghazawi, A., Hashmey, R., Haidermota, A., Girgis, S., Alfaresi, M., Omar, M., Paterson, D., Zowawi, H. M., & Pál, T. (2017). Multihospital occur-rence of pan-resistant Klebsiella pneumoniae se-quence type 147 with an ISEcp1-directed blaOXA-181 insertion in the mgrB gene in the United Arab Emirates. Antimicrobial agents and chemotherapy, 61(7). doi: 10.1128/AAC.00418-17.

Tentcheva, D., Gauthier, L., Zappulla, N., Dainat, B., Cousserans, F., Colin, M., & Bergoin, M. (2004). Prev-alence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite popula-tions in France. Applied and Environmental Microbi-ology, 70, 7185–7191. doi: 10.1128/AEM.70.12.7185-7191.2004.

Traynor, K. S., Rennich, K., Forsgren, E., Rose, R., Pettis, J., Kunkel, G., Madella, S., Evans, J., Lopez, D., & En-gelsdorp, D. (2016). Multiyear survey targeting disease incidence in US honey bees. Apidologie, 47, 325–347. doi: 10.1007/s13592-016-0431-0.

Xu, M., Li, A., Kong, H., Zhang, W., Chen, H., Fu, Y., & Fu, Y. (2018). Endogenous endophthalmitis caused by a multidrug-resistant hypervirulent Klebsiella pneu-moniae strain belonging to a novel single locus variant of ST23: first case report in China. BMC infectious diseases, 18(1), 669. doi: 10.1186/s12879-018-3109-6

Abstract views: 194
PDF Downloads: 132
How to Cite
Galatiuk, O., Romanishina, T., Lakhman, A., Behas, V., Andriichuk, A., & Solodka, L. (2020). Application of biochemical typing in veterinary medicine in bee enterobacterioses to determine Klebsiella Pneumoniae. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(99), 101-106.