Microscopic structure of the rectum of the domestic duck

Keywords: ducks, rectum, histological structure, postnatal period of ontogenesis


As a rule, researchers pay less attention to the features of the large intestine than to the small intestine. The purpose of the study was to determine the features of the microscopic structure of the rectum of ducks during the first year of the postnatal period of ontogenesis. For histological examinations, the material was selected from Ukrainian white-breasted ducks of 9 age groups: 1-, 3-, 7-, 14-, 21-day-old, 1-, 2-, 6-month-old and 1-year-old. Morphometric parameters of microstructures were set on cross sections of the midgut. The general change pattern in the morphometric parameters of the microstructures of the rectum of ducks was their increase, which was asynchronous and uneven. There was observed an active intestinal morphogenesis continued, as evidenced by the process of formation of villi and crypts in the group of 1-3-day-old ducks. The most intensive morphometric parameters of the rectum changed in the first month of the postnatal period of ontogenesis, during which – in the first week. In the first week, first and second month of life of ducks, the wall thickness of the rectum increased by 93.1, respectively; 199.5 and 20.4 %, the thickness of the mucous membrane – 81.0; 167.1 and 19.5 %, the thickness of the muscular membrane – by 126.1; 285.3 and 22.7 %, the height of the villi – by 113.2; 208.7 and 7.2 %, the width of the villi – by 84.7; 70.9 and 12.5 %, their surface area – by 293.8; 427.6 and 20.6 %, the depth of the crypt – by 85.1; 49.9 and 52.3 %, muscle plate thickness – by 254.0; 750.8 and 15.0 %. The most stable indicators of the rectum during the first year of the postnatal period of ontogenesis were the density of villi and crypts, the number of which after 7 days of age had no significant difference compared to that of a younger age. The indicates of adult birds morphometric parameters of the rectum of ducks corresponded at different ages: in 1-year-old – the thickness of the serous membrane and the density of villi; at 6 months – the diameter of the intestine, the surface area of the villi; at 2 months of age – the thickness of the wall and its mucous membrane, the width of the villi, the depth of the crypt; at 1 month – the thickness of the muscular membrane and plate, the height of the villi, the epithelium of the villi and crypt; at 3 days of age – the density of crypts; at 1 day of age – the width of the crypt.


Download data is not yet available.


Ali, H. A., & McLelland, J. (1978). Avian enteric nerve plexuses. A histochemical study. Cell and Tissue Re-search, 189(3), 537–548. doi: 10.1007/BF00209139.

Beauclercq, S., Nadal-Desbarats, L., Hennequet-Antier, C., Gabriel, I., Tesseraud, S., Calenge, F., Le Bihan-Duval, E., & Mignon-Grasteau, S. (2018). Relation-ships between digestive efficiency and metabolomic profiles of serum and intestinal contents in chickens. Scientific Reports, 8(1), 66–78. doi: 10.1038/s41598-018-24978-9.

Braun, E. J. (1999). Integration of renal and gastrointesti-nal function. Journal of Experimental Zoology, 283(4–5), 495–499. doi: 10.1002/(sici)1097-010x(19990301/01)283:4/5<495::aid-jez20>3.0.co;2-.

de Verdal, H., Narcy, A., Bastianelli, D., Chapuis, H., Même, N., Urvoix, S., Le Bihan-Duval, E., & Mignon-Grasteau, S. (2011). Improving the efficiency of feed utilization in poultry by selection. 1. Genetic pa-rameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genetics, 12(59). doi: 10.1186/1471-2156-12-59.

Dehkordi, R. A. F., & Ghahremani, P. (2016). Develop-mental study of rectum in broiler chicken: A stereological and morphometrical study. Veterinary Research Forum, 7(1), 41–45. URL: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4867036.

Dehkordi, R. A. F., & Shakaram, M. (2018). Morphology of rectum in broiler chicken and domestic fowl: nota-bility of retrograde peristalsis for water preservation. Journal of Applied Animal Research, 46(1), 599–603. doi: 10.1080/09712119.2017.1367687.

Dethlefsen, L., McFall-Ngai, M., & Relman, D. A. (2007). An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature, 449, 811–818. doi: 10.1038/nature06245.

Hanafy, B. G., Abumandour, M. M. A., & Bassuoni, N. F. (2020). Morphological features of the gastrointestinal tract of Garganey (Anas querquedula, Linnaeus 1758) Oesophagus to coprodeum. Anatomia, Histologia, Embryologia, 49(2), 233–250. doi: 10.1111/ahe.12519.

Hodges, R. D., & Michael, E. (1975). Structure and his-tichemistry of the normal intestine of the fowl. The Fine structure of the Duodenal Crypt. Cell and Tissue Research, 160, 125–138. doi: 10.1007/BF00219846.

Iji, P. A., Saki, A., & Tivey, D. R. (2001). Body and in-testinal growth of broiler chickens on a commercial starter diet. 1. Intestinal weight and mucosal development. British Poultry Science, 42, 505–513. doi: 10.1080/00071660120073151.

Kachave, C. D., Bhosle, N. S., Mamde, C. S., & Lambate, S. B. (2009). Histological observations on small intes-tine in broiler and layer of poultry birds. Royal Veter-inary Journal of India, 5(1–2), 5–9.

Kadhim, A. B., Dali, E. I., Sharoot, H. A., & Abdul-Rida, M. A.-H. (2018). Histomorphological study of duode-num of goose (Anser anser). Al-Qadisiyah Journal of Veterinary Medicine Sciences, 17(2), 43–48. doi: 10.29079/vol17iss2art503.

Katanbaf, M. N., Dunnington, E. A., & Siegel, P. B. (1988). Allomorphic relationships from hatching to 56 days in parental lines and F1 crosses of chickens se-lected for high or low body weight. Growth Develop-ment and Aging, 52, 11–22.

Khaleel, I. M., & Atiea, G. D. (2017). Morphological and histochemical study of small intestine inindigenous ducks (Anas platyrhynchos). IOSR Journal of Agricul-ture and Veterinary Science (IOSR-JAVS), 10(7), 19–27. doi: 10.9790/2380-1007021927.

King, D., Asem, E., & Adeola, O. (2000). Ontogenetic development of intestinal digestive functions in White Pekin ducks. The Journal of Nutrition, 130(1), 57–62. doi: 10.1093/JN/130.1.57.

Krogdahl, A., & Sell, J. L. (1989). Influence of age on lipase, amylase and protease activities in pancreatic tissue and intestinal contents of young turkeys. Poultry Science, 68, 1561–1568. doi: 10.3382/ps.0681561.

Krygin, A. V. (1960). Sravnitelnaya morfologiya pichs-hevaritelnogo apparata domashnih ptiz. Materialy nauchnoi konferencii. Troisk, 183–199 (in Russian).

Liu, E. H., & Oberg, K. (2010). The history and develop-ment of the gastroenteropancreatic endocrine axis. Endocrinology and Metabolism Clinics of North America, 39(4), 697–711. doi: 10.1016/j.ecl.2010.09.002.

Mobini, B. (2011). Age-dependent morphometric changes of different parts of small and large intestines in the Ross broilers. International Journal for Agro Veteri-nary and Medical Sciences, 5, 456–463.

Moran, E. T. (1985). Digestion and absorption of carbohydrates in fowl and events through perinatal development. The Journal of Nutrition, 115, 665–674. doi: 10.1093/jn/115.5.665.

Murakami, A. E., Sakamoto, M. I., Natali, M. R. M., Souza, L. M. G., & Franco, J. R. G. (2007). Supplementation of glutamine and vitamin e on the morphometry of the intestinal mucosa in broiler chickens. Poultry Science, 86(3), 488–495. doi: 10.1093/ps/86.3.488.

Nakao, N., Kaneda, H., Tsushima, N., Ohta, Y., & Tanaka, M. (2015). Characterization of primary structure and tissue expression profile of the chicken apical sodium-dependent bile acid transporter mRNA. Poultry Science, 94, 722–727 doi: 10.3382/ps/pev027.

Nitsan, Z., Avraham, G. B. Zorfe, Z., & Nir, I. (1991b). Growth and development of the digestive organs and some enzymes in the broiler chicks after hatching. British Poultry Science, 32, 515–523. doi: 10.1080/00071669108417376.

Nitsan, Z., Duntington, E. A., & Siegel, P. B. (1991a). Organ growth and digestive enzyme levels to fifteen days of age in lines of chickens differing in body weight. Poultry Science, 70, 2040–2048. doi: 10.3382/ps.0702040.

Noy, Y., & Sklan, D. (1997). Posthatch development in poultry. Journal of Applied Poultry Research, 6, 344–354. doi: 10.1093/japr/6.3.344.

Noy, Y., & Sklan, D. (1998). Yolk utilization in the newly hatched poultry. British Poultry Science, 37, 987–996. doi: 10.1080/00071669889042.

Pandit, K., Dhote, B. S., Mahanta, D., Sathapathy, S., Tamilselvan, S., Mrigesh, M., & Mishra, S. (2018). Histological, histomorphometrical and histochemical studies on the large intestine of Uttara fowl. International Journal of Current Microbiology and Applied Sciences, 7(3), 1477–1491. doi: 10.20546/ijcmas.2018.703.176.

Qaisrani, S. N., van Krimpen, M. M., Kwakkel, R. P., Verstegen, M. W. A., & Hendriks, W. H. (2015). Diet structure, butyric acid, and fermentable carbohydrates influence growth performance, gut morphology, and cecal fermentation characteristics in broilers. Poultry Science, 94(9), 2152–2164. doi: 10.3382/ps/pev003.

Reyes, L., & Braun, E. J. (2005). The functional mor-phology of the english sparrow cecum. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology, 141(3), 292–297. doi: 10.1016/j.cbpb.2005.05.053.

Rinttilä, T., & Apajalahti, J. (2013). Intestinal microbiota and metabolites-Implications for broiler chicken health and performance. Journal of Applied Poultry Research, 22, 647–658. doi: 10.3382/japr.2013-00742.

Sell, J. L., Angel, C. R., Piquer, F. J., Mallarino, E. G., & Al-Batshan, H. A. (1991). Developmental patterns of selected characteristics of the gastrointestinal tract of young turkeys. Poultry Science, 70, 1200–1205. doi: 10.3382/ps.0701200.

Sell-Kubiak, E., Wimmers, K., Reyer, H., & Szwaczkow-ski, T. (2017). Genetic aspects of feed efficiency and reduction of environmental footprint in broilers: a re-view. Journal of Applied Genetics, 58(4), 487–498. doi: 10.1007/s13353-017-0392-7.

Sklan, D. (2001). Development of the digestive tract of poultry. British Poultry Science, 57, 415–428. doi: 10.1079/WPS20010030.

Sklan, D., & Noy, Y. (2000). Hydrolysis and absorption in the small intestines of posthatch chicks. Poultry Sci-ence. 79(9), 1306–1310. doi: 10.1093/ps/79.9.1306.

Thomas, D. H. (1982). Salt and water excretion by birds: the lower intestine as an integrator of renal and intes-tinal excretion. Comparative Biochemistry and Physi-ology – Part A: Molecular & Integrative Physiology, 71(4), 527–535. doi: 10.1016/0300-9629(82)90201-8.

Tran, T. S., Narcy, A., Carré, B., Gabriel, I., Rideau, N., Gilbert, H., Demeure, O., Bed'Hom, B., Chantry-Darmon, C., Boscher, M. Y., Bastianelli, D., Sellier, N., Chabault, M., Calenge, F., Le Bihan-Duval, E., Beaumont, C., & Mignon-Grasteau, S. (2014). Detec-tion of QTL controlling digestive efficiency and anat-omy of the digestive tract in chicken fed a wheat-based diet. Genetics Selection Evolution, 46(1), 25. doi: 10.1186/1297-9686-46-25.

Trifonov, G. A., & Kuleshov, K. A. (2008). Postnatalnyiy morfogenez dvenadtsatiperstnoy kishki kur pri prime-nenii selensoderzhaschih preparatov. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 3(41), 33–36 (in Russian).

Uni, Z., Noy, Y., & Sklan, D. (1999). Posthatch development of small intestinal function in the poult. Poultry Science, 78, 215–222. doi: 10.1093/ps/78.2.215.

van der Klis J. D., Verstegen M. W., & De Wit W. (1990). Absorption of minerals and retention time of dry matter in the gastrointestinal tract of broilers. Poultry Science, 69(12), 2185–2194. doi: 10.3382/ps.0692185.

Watkins, E. J., Butler, P. J., & Kenyon, B. P. (2004). Posthatch growth of the digestive system in wild and domesticated ducks. British Poultry Science, 45(3), 331–341. doi: 10.1080/00071660410001730824.

Yang, H., Lyu, W., Lu, L., Shi, X., Li, N., Wang, W., & Xiao, Y. (2020). Biogeography of microbiome and short-chain fatty acids in the gastrointestinal tract of duck. Poultry Science, 99(8), 4016–4027. doi: 10.1016/j.psj.2020.03.040.

Yovchev, D., Dimitrov, D., & Penchev, G. (2013). Age weight and morphometrical parameters of the bronze turkey’s (Meleagris meleagris gallopavo) intestines. Bulgarian Journal of Agricultural Science, 19(3), 611–614.

Zharova, E. Yu., & Tkachev, A. A. (2007). Morfologyya tolstogo kyshechnyka kur krossa “Yza Braun”. Ptycevodstvo, 10, 38–39 (in Russian).

Abstract views: 26
PDF Downloads: 21
How to Cite
Makhotina, D., Kushch, M., & Bondarenko, O. (2020). Microscopic structure of the rectum of the domestic duck. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(100), 41-49. https://doi.org/10.32718/nvlvet10008