Nuclear morphometry of mammary tumors of dogs and histopathological diagnosis


Keywords: cancer, nucleus, area, perimeter, diameter.

Abstract

For dog’s mammary tumors diagnostics scientists need researches, which can adopt and use methods developed for humans. The aim of this research paper is to set the inter relation between the parameters of nuclear morphometry (nuclear area, diameter, perimeter) and histopathological type of mammary tumors of dogs. Animals aged from 6 to 12 (medium meaning 9.2 ± 1.6 years). According to histopathological research 3 tumors were benign and 25 were malignant, 18 of them – malignant epithelial neoplasms (3 tubular carcinomas, 13 tubulopapillary carcinomas, 1 cystic-papillary carcinoma, 3 colid carcinomas, 1 micropapillary carcinoma), 3 malignant epithelial neoplasms of special type (mucinous, lipid-rich, spindle cell carcinomas) and 4 malignant mesenchymal neoplasms (chondrosarcoma). Nuclear morphometry parameters (nuclear area, perimeter and diameter) of benign tumours (20.48 ± 1.22, 19.13–21.50 µm2; 19.27 ± 0.10, 19.17–19.36 µm and 5.09 ± 0.16, 4.92–5.22 µm) were probably smaller than in malignant tumours, for example in simple carcinoma (38.61 ± 5.61, 29.26–46.16 µm2; 26.42 ± 2.32, 22.10–29.60 µm and 6.96 ± 0.52, 6.03–7.62 µm), tubular (37.89 ± 7.30, 29.94–46.16 µm2, 26.34 ± 2.83, 22,98–29,60 µm and 6.90 ± 0.70, 6.16–7.62 µm), tubulopapillary (40.22 ± 3.48, 34.38–44.75 µm2, 27.02 ± 1.49, 24.41–28.97 µm and 7.12 ± 0.31, 6.58–7.52 µm), colid (43.57 ± 5.54, 37.71–48.73 µm2, 28.05 ± 1.88, 26.54–30.15 µm and 7.41 ± 0.47, 6.91–7.85 µm), other malignant epithelial neoplasms (39.99 ± 5.15, 29.94–48.73 µm2; 26.85 ± 2.03, 22.98–30.15 µm and 7.09 ± 0.50, 6.16–7.85 µm) and malignant epithelial neoplasms of special types (45.89 ± 4.12, 43.41–50.65 µm2; 29.92 ± 0.21, 29.68–30.06 µm and 7.60 ± 0.34, 7.41–8.00 µm). However, there was not statistically significant difference in comparison between benign tumours and sarcomas (25.95 ± 5.21, 21.64–33.00 µm2; 21.85 ± 1.79, 20.21–24.05 µm and 5.68 ± 0.56, 5.21–6.42 µm). Among the different groups of malignant neoplasms lower rates were in sarcoma, the other groups had no difference. Taking into consideration the indicators of nuclear morphometry (nuclear area, diameter and perimeter) different types of neoplasms can be differentiated: benign from malignant tumours and sarcomas from malignant epithelial neoplasms (tubular, tubulopapillary, cystic-papillary, colid, micropapillary, mucinous, lipid-rich and spindle cell carcinomas).

Downloads

Download data is not yet available.

References

[No authors listed]. (1997). The uniform approach to breast fine-needle aspiration biopsy. National Cancer Institute Fine-Needle Aspiration of Breast Workshop Subcommittees. Diagn Cytopathol, 16(4), 295–311. doi: 10.1002/(sici)1097-0339(1997)16:4<295::aid-dc1>3.0.co;2-d.

Abdalla, F., Boder, J., Markus, R., Hashmi, H., Buhmeida, A., & Collan, Y. (2009). Correlation of nuclear morphometry of breast cancer in histological sections with clinicopathological features and prognosis. Anticancer Res, 29(5), 1771–1776. URL: https://pubmed.ncbi.nlm.nih.gov/19443402.

Carleton, N., Zhu, G., Resar, L., Rooper, L., Bae, Y. K., & Veltri, R. W. (2016). Abstract 3922: Prediction of breast cancer progression using nuclear morphometry. Cancer Res., 76(14 Suppl), 3922. doi: 10.1158/1538-7445.AM2016-3922.

Chowdhury, A. R., Talukdar, M., & Adhikari, A. (2017). Role of nuclear morphometry as objective parameter to evaluate cytology smears of epithelial breast lesions. J Clin Diagn Res, 11(12), EC26–EC28. doi: 10.7860/JCDR/2017/30799.10957.

Ciurea, D., Wilkins, R. J., Shalev, M., Liu, Z. Y., Barba, J., & Gil, J. (1992). Use of computerized interactive morphometry in the diagnosis of mammary adenoma and adenocarcinoma in dogs. Am J Vet Res, 53(3), 300–303. URL: https://pubmed.ncbi.nlm.nih.gov/1595955.

De Vico, G., Maiolino, P., Cataldi, M., Mazzullo, G., & Restucci, B. (2007). Nuclear morphometry in relation to lymph node status in canine mammary carcinomas. Vet Res Commun, 31(8), 1005–1011. doi: 10.1007/s11259-006-0108-7.

Dolka, I., Czopowicz, M., Gruk-Jurka, A., Wojtkowska, A, Sapierzyński, R., & Jurka, P. (2018). Diagnostic efficacy of smear cytology and Robinson's cytological grading of canine mammary tumors with respect to histopathology, cytomorphometry, metastases and overall survival. PLoS One, 13(1), e0191595. doi: 10.1371/journal.pone.0191595.

Goldschmidt, M., Pena, L., Rasotto, R., & Zappulli, V. (2011). Classification and grading of canine mammary tumors. Veterinary pathology, 48(1), 117–131. doi: 10.1177/0300985810393258.

Ikpatt, O. F., Kuopio, T., & Collan, Y. (2002). Nuclear morphometry in african breast cancer. Image Anal Stereol, 21(2), 145–150. doi: 10.5566/ias.v21.

Iliс, I. R., Stojanović, N. M., Randjelović, P. J., Mihajlović, M. N., Radulović, N. S., & Ilić, R. S. (2016). Evaluation of pathological parameters and morphometric data of desmoplastic lobular breast carcinoma. Indian J Pathol Microbiol., 59(4), 463–468. doi: 10.4103/0377-4929.191775.

Kalhan, S., Dubey, S., Sharma, S., Dudani, S., Preeti, & Dixit, M. (2010). Significance of nuclear morphometry in cytological aspirates of breast masses. J Cytolol, 27(1), 16–21. doi: 10.4103/0970-9371.66694.

Kashyap, A., Jain, M., Shukla, S., & Andley, M. (2018). Role of nuclear morphometry in breast cancer and its correlation with cytomorphological grading of breast cancer: A Study of 64 Cases. J Cytol, 35(1), 41–45. doi: 10.4103/JOC.JOC_237_16.

Pienta, K. J., & Coffey, D. S. (1991). Correlation of nuclear morphometry with progression of breast cancer. Cancer, 68(9), 2012–2016. doi: 10.1002/1097-0142(19911101)68:9<2012::aid-cncr2820680928>3.0.co;2-c.

Pierini, A., Millanta, F., Zanforlin, R., Vannozzi, I., Marchetti, V. (2017). Usefulness of cytologic criteria in ultrasound-guided fine-needle aspirates from subcentimeter canine mammary tumors. J Vet Diagn Invest, 29(6), 869–873.doi: 10.1177/1040638717718886.

Radwan, M. M., Amer, K. A., Mokhtar, N. M., Kandil, M. A., El-Barbary, A. M., & Aiad, H. A. (2003). Nuclear morphometry in ductal breast carcinoma with correlation to cell proliferative activity and prognosis. J Egyptian Nat Cancer Inst, 15(3), 169–182.

Ruiz, A., Almenar, S., Callaghan, R. C., & Llombart-Bosch, A. (1999). Benign, preinvasive and invasive ductal breast lesions. a comparative study with quantitative techniques: morphometry, image- and flow cytometry. Pathol. Res. Pract., 195(11), 741–746. doi: 10.1016/S0344-0338(99)80115-0.

Simeonov, R., & Simeonova, G. (2006). Computerized morphometry of mean nuclear diameter and nuclear roundness in canine mammary gland tumors on cytologic smears. Vet Clin Pathol, 35(1), 88–90. doi: 10.1111/j.1939-165X.2006.tb00093.x.

Vascellari, M., Capello, K., Carminato, A., Zanardello, C., Baioni, E., & Mutinelli, F. (2016). Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Prev Vet Med, 126, 183–189. doi: 10.1016/j.prevetmed.2016.02.008.

Abstract views: 24
PDF Downloads: 12
Published
2020-12-23
How to Cite
Fedets, O., Zayats, O., Zaitsev, O., Zakrevska, M., Kurlyak, I., & Midyanyy, S. (2020). Nuclear morphometry of mammary tumors of dogs and histopathological diagnosis. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(100), 123-128. https://doi.org/10.32718/nvlvet10021