Preventive efficacy of trace elements chelates in poultry farming (review)


Keywords: broiler chickens, laying hens, Zinc, Manganese, chelates, microelementosis, bioavailability.

Abstract

Trace elements in the body of the bird are in small quantities, but their role in productivity remains important. In order to get a quality carcass at the slaughterhouse, you need a constant supply of nutrients and, last but not least, microelements. Zinc and Manganese are essential trace elements that affect the growth and development of birds. And their deficiency in the body has a negative effect on the productivity of birds. In the diet of broilers trace elements are mainly added with a premix in the form of inorganic salts (sulfates, carbonates). However, these micronutrient compounds in the body of the bird are insufficiently absorbed, and increasing the dose of their introduction can cause toxicosis. Therefore, in order to prevent microelementosis, it is more appropriate to use organic compounds (chelates), which have a much higher level of bioavailability and less release into the environment. This review article describes the prophylactic efficacy of Zinc and Manganese chelates in micronutrient deficiencies in broiler chickens and laying hens. With a deficiency of a particular trace element develop metabolic disorders and other pathologies (perosis, etc.). Based on the presented data, it can be concluded that the use of organic forms of trace elements in poultry feeding is a better alternative to inorganic sources, as they can be used in smaller quantities. But due to their greater bioavailability, they are better absorbed, which has a positive effect on the productivity of broilers. Since knowledge about the use of chelated forms of trace elements in comparison with inorganic forms (salts, sulfates, etc.) in the diet of poultry is still poorly understood, it is necessary to further conduct research to prevent micronutrient deficiencies in these compounds.

Downloads

Download data is not yet available.

References

Abd El-Hack, M. E., Alagawany, M., Arif, M., Chaudhry, M. T., Emam, M., & Patra, A. (2017). Organic or inor-ganic Zinc in poultry nutrition: a review. World’s Poul-try Science Journal, 73(4), 904–915. doi: 10.1017/S0043933917000769.

Akter, M., Iji, P. A., & Graham, H. (2017). Increased iron level in phytase-supplemented diets reduces perfor-mance and nutrient utilisation in broiler chickens. Brit-ish Poultry Science, 58(4), 409–417. doi: 10.1080/00071668.2017.1315050.

Antonjak, G. L., Vazhnenko, O. V., Bovt, V. D., & Stefan-ishin, O. M. (2011). Bіologіchna rol' Cinku v organіzmі ljudini і tvarin. Bіologіja Tvarin, 13(1–2), 17–31 (in Ukrainian).

Aschner, J. L., & Aschner, M. (2005). Nutritional aspects of Manganese homeostasis. Molecular Aspects of Medicine, 26(4–5), 353–362. doi: 10.1016/j.mam.2005.07.003.

Bahakaim, A., Magied, H. A., Osman, S., Omar, A., AbdelMalak, N. Y., & Ramadan, N. (2014). Effect of using different levels and sources of Zinc in layer’s di-ets on egg Zinc enrichment. Egyptian Poultry Science, 34(1), 39–56. doi: 10.21608/epsj.2014.5305.

Bakulin, V. A. (2015). Nedostatok makro- i mikrojele-mentov. Efektivne Ptahіvnictvo, 9(129), 16–19 (in Ukrainian).

Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Kos Durjava, M., & Ramos, F. (2020). Safety and efficacy of Manganese chelates of lysine and glutamic acid as feed additive for all ani-mal species. EFSA Journal, 18(2). doi: 10.2903/j.efsa.2020.6001.

Berta, E., Andrásofszky, E., Bersényi, A., Glávits, R., Gáspárdy, A., & Fekete, S. G. (2004). Effect of inor-ganic and organic Manganese supplementation on the performance and tissue Manganese content of broiler chicks. Acta Veterinaria Hungarica, 52(2), 199–209. doi: 10.1556/AVet.52.2004.2.8.

Brooks, M. A., Grimes, J. L., Lloyd, K. E., Verissimo, S., & Spears, J. W. (2013). Bioavailability in chicks of Zinc from Zinc propionate. The Journal of Applied Poultry Research, 22(2), 153–159. doi: 10.3382/japr.2012-00525.

Burdone, A. (2015). Melaty mikrojelementov: uspeshnyj otkorm i pererabotka. Zhivotnovodstvo Rossii, 6, 38–40 (in Russian).

Chang, L. ling, Xie, P., Bu, Z., Wang, Q., Fu, S., & Mu, C. (2018). Effect of dietary lysine level on performance, egg quality and serum biochemical indices of laying pigeons. Journal of Applied Poultry Research, 27(2), 152–158. doi: 10.3382/japr/pfx047.

De Marco, M., Zoon, M. V., Margetyal, C., Picart, C., & Ionescu, C. (2017). Dietary administration of glycine complexed trace minerals can improve performance and slaughter yield in broilers and reduces mineral ex-cretion. Animal Feed Science and Technology, 232, 182–189. doi: 10.1016/j.anifeedsci.2017.08.016.

Dobrzanski, Z., Korczynski, M., Chojnacka, K., Gorecki, H., & Opalinski, S. (2008). Influence of Organic Forms of Copper, Manganese and Iron on Bioaccumulation of These Metals and Zinc in Laying Hens. Journal of Elementology, 13(3), 309–319. URL: http://www.uwm.edu.pl/jold/poj1332008/jurnal-03.pdf.

Fagan, S., Owens, R., Ward, P., Connolly, C., Doyle, S., & Murphy, R. (2015). Biochemical comparison of commercial Selenium yeast preparations. Biological Trace Element Research, 166(2), 245–259. doi: 10.1007/s12011-015-0242-6.

Fedin, A., Gajirbegov, D., Simonov, G., & Denisov, D. (2012). Kremnij organicheskaja dobavka v racionah nesushek. Pticevodstvo, 5, 33–34 (in Russian).

Feng, J., Ma, W. Q., Niu, H. H., Wu, X. M., Wang, Y., & Feng, J. (2010). Effects of Zinc Glycine Chelate on Growth, Hematological, and Immunological Charac-teristics in Broilers. Biological Trace Element Re-search, 133(2), 203–211. doi: 10.1007/s12011-009-8431-9.

Gazіev, B. M., Saprkіn, V. O., Іonov, І. A., Zhukors'kij, O. M., Marchenkoov, F. S., & Martenjuk, І. O. (2013). Efektyvnіst' zgodovuvannja rіznyh doz helatnoi formy zalіza suporosnym і laktujuchym svynomat-kam. Vіsnyk AgrarnoiNauky, 2, 26–30 (in Ukrainian).

Hosseini-Mansoub, N., Chekani-Azar, S., Tehrani, A., Lotfi, A., & Manesh, M. (2010). Influence of dietary vitamin E and Zinc on performance, oxidative stabil-ity and some blood measures of broiler chickens reared under heat stress (35 °C). Journal of Agrobiolo-gy, 27(2), 103–110. doi: 10.2478/s10146-009-0012-1.

Ibrahim, D., Ali, H., & El-Mandrawy, S. (2017). Effects of Different Zinc Sources on Performance, Bio Distribu-tion of Minerals and Expression of Genes Related to Metabolism of Broiler Chickens. Zagazig Veterinary Journal, 45(3), 292–304. doi: 10.21608/zvjz.2017.7954.

Jackson, J. B. C. (1994). Nutrient Requirements of Poul-try: Ninth Revised Edition. doi: 10.1073/pnas.091092898.

Kamran Azad, S., Shariatmadari, F., Karimi Torshizi, M. A., & Ahmadi, H. (2018). Effect of zinc concentration and source on performance, tissue mineral status, ac-tivity of superoxide dismutase enzyme and lipid pe-roxidation of meat in broiler chickens. Animal Produc-tion Science, 58(10), 1837. doi: 10.1071/AN15758.

Kaya, Ş., Keçeci, T., & Haliloǧlu, S. (2001). Effects of Zinc and vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens. Research in Veterinary Sci-ence, 71(2), 135–139. doi: 10.1053/rvsc.2001.0500.

Kaya, S., Ortatatli, M., & Haliloglu, S. (2002). Feeding diets supplemented with Zinc and vitamin A in laying hens: effects on histopathological findings and tissue mineral contents. Research in Veterinary Science, 73(3), 251–257. doi: 10.1016/S0034-5288(02)00095-4.

Khillare, G. S., Shyamkumar, T. S., Ahmad, M., Prab-hakar, G., Rokade, J. J., Beulah, P. V., Gopi, M. (2019). Effects of dietary Manganese supplementa-tion on selected biochemical characteristics and min-erals in broiler breeder seminal plasma. Indian Journal of Poultry Science, 54(1), 37. doi: 10.5958/0974-8180.2019.00011.4.

Kim, J. W., Kim, J. H., Shin, J. E., & Kil, D. Y. (2016). Rel-ative bioavailability of Copper in tribasic copper chlo-ride to Copper in Copper sulfate for laying hens based on egg yolk and feather Copper concentrations. Poul-try Science, 95(7), 1591–1597. doi: 10.3382/ps/pew049.

Klіcenko, T. G. (2016). Vplyv mіneral'nyh elementіv na peretravnіst' і zasvoiennia rechovyn u ptycі. Efektivne Ptahіvnyctvo, 3(135), 16–18 (in Ukrainian).

Koltun, E. M., & Katins'kij, Ju. M. (2011). Profіlaktika і dіagnostyka mіkroelementozіv cynku, jodu u kurchat brojlerіv. Naukovyi Vіsnyk LNUVMBT іmenі S. Z. Gzhyc'kogo, 13(4(50)), 92–99 (in Ukrainian).

Konieczka, P., Czauderna, M., & Smulikowska, S. (2015). The effect of dietary fat, vitamin E and selenium concentrations on the fatty acid profile and oxidative stability of frozen stored broiler meat. Jornal of Ani-mal and Feed Sciences, 24(September), 244–251. doi: 10.22358/jafs/65630/2015.

Kucan, O. T., Orobchenko, O. L., & Kochergіn, Ju. A. (2014). Toksyko-bіohіmіchna harakterystyka neor-ganіchnyh elementіv ta zastosuvannja rentgenofluo-rescentnogo analіzu u veterinarnіj medycynі (Planeta-pr). Harkіv (in Ukrainian).

Kucuk, O., Kahraman, A., Kurt, I., Yildiz, N., & Onmaz, A. C. (2008). A Combination of Zinc and Pyridoxine Supplementation to the Diet of Laying Hens Im-proves Performance and Egg Quality. Biological Trace Element Research, 126(1–3), 165–175. doi: 10.1007/s12011-008-8190-z.

Kucuk, O., Sahin, N., & Sahin, K. (2003). Supplemental Zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological Trace Ele-ment Research, 94(3), 225–235. doi: 10.1385/BTER:94:3:225.

Kwiecień, M., Samolińska, W., & Bujanowicz-Haraś, B. (2015). Effects of iron-glycine chelate on growth, car-cass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. Journal of Animal Physiology and Animal Nutrition, 99(6), 1184–1196. doi: 10.1111/jpn.12322.

Kwiecień, M., Winiarska-Mieczan, A., Milczarek, A., & Klebaniuk, R. (2017). Biological Response of Broiler Chickens to Decreasing Dietary Inclusion Levels of Zinc Glycine Chelate. Biological Trace Element Re-search, 175(1), 204–213. doi: 10.1007/s12011-016-0743-y.

Kwiecień, M., Winiarska-Mieczan, A., Milczarek, A., To-maszewska, E., & Matras, J. (2016). Effects of Zinc glycine chelate on growth performance, carcass char-acteristics, bone quality, and mineral content in bone of broiler chicken. Livestock Science, 191, 43–50. doi: 10.1016/j.livsci.2016.07.005.

Landver, B. (2018). Optimizacija potrebnosti v mikrojel-ementah s pomoshh'ju glicinatov. Zhivotnovodstvo Rossii, 2, 14–16 (in Russian).

Levchenko, V. І., Vlіzlo, V. V., & Kondrahіn, І. P. (2015). Vnutrіshnі hvoroby tvaryn. Bіla Cerkva (in Ukraini-an).

Li, S., Lin, Y., Lu, L., Xi, L., Wang, Z., Hao, S., Luo, X. (2011). An Estimation of the Manganese Require-ment for Broilers from 1 to 21 Days of Age. Biological Trace Element Research, 143(2), 939–948. doi: 10.1007/s12011-010-8931-7.

Liu, R., Jin, C., Wang, Z., Wang, Z., Wang, J., & Wang, L. (2015). Effects of Manganese deficiency on the mi-crostructure of proximal tibia and OPG/RANKL gene expression in chicks. Veterinary Research Communi-cations, 39(1), 31–37. doi: 10.1007/s11259-015-9626-5.

Lopes, M., Paroul, N., Barbosa, J., Valduga, E., Cansian, R. L., Toniazzo, G., & Oliveira, D. (2018). Effect of Partial and Total Replacement of Inorganic by Organ-ic Microminerals Sources on the Quality of Broiler Carcasses. Brazilian Archives of Biology and Tech-nology, 60, 1–11. doi: 10.1590/1678-4324-2017160082.

Lu, L., Chang, B., Liao, X., Wang, R., Zhang, L., & Luo, X. (2016). Use of molecular biomarkers to estimate manganese requirements for broiler chickens from 22 to 42 d of age. British Journal of Nutrition, 116(09), 1512–1518. doi: 10.1017/S0007114516003640.

Lu, L., Ji, C., Luo, X. G., Liu, B., & Yu, S. X. (2006). The effect of supplemental Manganese in broiler diets on abdominal fat deposition and meat quality. Animal Feed Science and Technology, 129(1–2), 49–59. doi: 10.1016/j.anifeedsci.2005.12.005.

Marchenkov, F. S., & Storozhuk, T. V. (2010). Helatnі mіkroelementy – vazhlivyi komponent kombіkormіv ta premіksіv. Zernovі Produkti і Kombіkormy, 1, 37–38 (in Ukrainian).

Marchenkov, F., Martinjuk, І., & Vashhenko, O. (2009). Helatnі mіkroelementy v godіvlі ptycі. Nashe Ptahіvnictvo, 6, 26–27 (in Ukrainian).

Medveds'kij, V. A., Bazylev, M. V., Bol'shakova, L. P., & Munajar, H. F. (2016). Biologicheskie osnovy miner-al'nogo pitanija sel'skohozjajstvennoj pticy. Nauch-noe obozrenie. biologicheskie nauki, 2, 93–108 (in Russian).

Medvid, S. (2018). Effect of aquacitrate of micro elements on indices of nonspecific resistance and cellular immunity in chicken broilers. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Agricultural Sciences, 20(84), 33–38. doi: 10.15421/nvlvet8406.

Medvid, S. M., Hunchak, A. V., Gutyj, B. V., & Ratych, I. B. (2017). Prospects of rational security chicken-broilers with mineral substances. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 19(79), 127–134. doi: 10.15421/nvlvet7925.

Mikoni, N. A., Poppenga, R., Ackerman, J. T., Foley, J., Hazlehurst, J., Purdin, G., & Tell, L. A. (2017). Trace element contamination in feather and tissue samples from Anna’s hummingbirds. Ecological Indicators, 80, 96–105. doi: 10.1016/j.ecolind.2017.04.053.

Mondal, S., Haldar, S., Saha, P., & Ghosh, T. K. (2010). Metabolism and Tissue Distribution of Trace Ele-ments in Broiler Chickens’ Fed Diets Containing Defi-cient and Plethoric Levels of Copper, Manganese, and Zinc. Biological Trace Element Research, 137(2), 190–205. doi: 10.1007/s12011-009-8570-z.

Muszyński, S., Tomaszewska, E., Kwiecień, M., Do-browolski, P., & Tomczyk, A. (2017). Effect of Die-tary Phytase Supplementation on Bone and Hyaline Cartilage Development of Broilers Fed with Organical-ly Complexed Copper in a Cu-Deficient Diet. Biologi-cal Trace Element Research, 1–15. doi: 10.1007/s12011-017-1092-1.

Musіch, O. І. (2015). Produktivnіst' kurej za rіznyh doz organіchnogo selenu. Naukovo-Tehnіchnyi Bjuleten' ІT NAAN, 114, 98–103 (in Ukrainian).

Nіshhemenko, M. P., Emel'janenko, A. A., & Stovbec'ka, L. S. (2014). Harakterystyka embrіonal'nogo rozvytku, vyvodu і vyvodymostі molodnjaku pere-pelіv pry іnkubacіjnіj obrobcі jaec' rozchynom akva-helatu Selenu. Vіsnyk Sums'kogo Nacіonal'nogo Agrarnogo Unіversitetu Serіja “Veterinarna Medici-na”, 1(34), 77–80 (in Ukrainian).

Ognik, K., Kozłowski, K., Steȩpniowska, A., Szlaȩzak, R., Tutaj, K., Zduńczyk, Z., & Jankowski, J. (2019). The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in Turkey tis-sues. Animal, 13(6), 1137–1144. doi: 10.1017/S1751731118002653.

Okolelova, T. M. (2017). Makro- i mikrojelementy v kormlenii pticy. Efektivne Ptahіvnictvo, 3(147), 26–30 (in Russian).

Olgun, O. (2017). Manganese in poultry nutrition and its effect on performance and eggshell quality. World’s Poultry Science Journal, 73(01), 45–56. doi: 10.1017/S0043933916000891.

Park, S. Y., Birkhold, S. G., Kubena, L. F., Nisbet, D. J., & Ricke, S. C. (2004). Review on the role of dietary Zinc in poultry nutrition, immunity, and reproduction. Bio-logical Trace Element Research, 101(2), 147–163. doi: 10.1385/BTER:101:2:147.

Petrinich, V. V., & Petrinich, O. A. (2017). Marganec': toksykologіchnі, gіgіenіchnі ta bіologіchnі aspekty. Klіnіchna ta Eksperimental'na Patologіja, 1(59), 182–184 (in Ukrainian).

Petrosjan, A. B. (2010). Priroda biodostupnosti mikro-jelementov. Ptica i Ptice Produkty, 1, 35–38 (in Rus-sian).

Podobed, L. I. (2017). Mikrojelementy Ferrum i Cink - znachenie i normirovanie v kormlenii pticy. Suchasne Ptahіvnictvo, 01-02(170-171), 35–37 (in Russian).

Prasad, A. S., Beck, F. W. J., Snell, D. C., & Kucuk, O. (2009). Zinc in cancer prevention. Nutrition and Can-cer, 61(6), 879–887. doi: 10.1080/01635580903285122.

Red’ka, A. I., Bomko, V. S., Babenko, S. P., & Chernyavsky, A. A. (2018). Broiler Chickens Bio-chemical Blood Indicators By the Zinc Sulfate and Zinc-Mixed Ligand Complex Feeding. The Scientific and Technical Bulletin of the Institute of Animal Sci-ence NAAS of Ukraine, 120, 127–135. doi: 10.32900/2312-8402-2018-120-127-135.

Refaie, A. (2009). Performance and Immunocompetence of Broilers As Affected By Dietary Zinc , Protein Level and Phytase Supplementation During Performance and Immunocompetence of Broilers As Affected By Dietary Zinc , Protein Level and Phytase Supplemen-tation During Summer. 5th International Poultry Con-ference (10-13 March 2009), 959–981.

Sahin, K., Sahin, N., Kucuk, O., Hayirli, A., & Prasad, A. S. (2009). Role of dietary zinc in heat-stressed poultry: A review. Poultry Science, 88(10), 2176–2183. doi: 10.3382/ps.2008-00560.

Sakara, V. S., Melnyk, A. Y., Sakhniuk, V. V., Bakhur, T. I., Bohatko, L. M., & Samorai, M. M. (2020). Changes in protein and mineral metabolism in broiler chickens with perosis. Regulatory Mechanisms in Biosystems, 11(4), 542–545. doi: 10.15421/022083.

Salami, S. A., Oluwatosin, O. O., Oso, A. O., Fafiolu, A. O., Sogunle, O. M., Jegede, A. V., & Pirgozliev, V. (2016). Bioavailability of Cu, Zn and Mn from Mineral Che-lates or Blends of Inorganic Salts in Growing Turkeys Fed with Supplemental Riboflavin and/or Pyridoxine. Biological Trace Element Research, 173(1), 168–176. doi: 10.1007/s12011-016-0618-2.

Saprkіn, V. O., Іonov, І. A., Gazієv, B. M., Zhukors'kij, O. M., & Marchenkov, F. S. (2016). Helatnі formy zalіza u godіvlі suporosnyh ta laktujuchyh svynomatok. Bіologіja ta Ekologіja, 2(2), 70–79 (in Ukrainian).

Shackih, E. V. (2008). Kachestvo m’jasa brojlerov pri ispol'zovanii biopleksa cinka. Ptica i Pticeprodukty, 3, 36–37 (in Ukrainian).

Shackih, E. V. (2013). Ispol'zovanie biopleksa Marganca v kormlenii cypljat-brojlerov. Agrarnyj Vestnik Urala, 3(109), 33–35 (in Russian).

Shevchenko, L. V., Jaremchuk, O. S., Gusak, S. V., Mihal's'ka, V. M., & Poljakovs'kij, V. M. (2017). Vmіst mіkroelementіv ta vіtamіnu A v jajcjah pereppelіv za vplyvu kompleksu glіcynatіv mіrokelementіv ta mіkrobnogo β-karotynu. Ukrainan Jornal of Ecology, 7(2), 19–23. doi: 10.15421/201716 (in Ukrainian).

Shevchenko, L. V., Mihal's'ka, V. M., Maljuga, L. V., & Poljakovs'kij, V. M. (2014). Kompleksnі spoluky mіkroelementіv – suchasnі zasoby profіlaktyky hvorob ptycі. Bіoresursi і Prirodokoristovannja, 6(1–2), 67–70 (in Ukrainian).

Shinde, P. L., Ingale, S. L., Choi, J. Y., Kim, J. S., Pak, S. I., & Chae, B. J. (2011). Efficiency of inorganic and or-ganic Iron sources under iron depleted conditions in broilers. British Poultry Science, 52(5), 578–583. doi: 10.1080/00071668.2011.607430.

Simonov, G. (2010). Cytraty biomaterialov v racionah cipljat-brojlerov. Pticevodstvo, 1, 42–43 (in Ukraini-an).

Slіvіns'ka, L. G., & Fedorovich, N. (2012). Zastosuvannja helatnyh spoluk mіkroelementіv u molodnjaku ovec'. Naukovyi Vіsnyk LNUVMBT іmenі S. Z. Gzhyc'kogo, 14(3(53)), 252–257 (in Ukrainian).

Soboleva, A. A. (2017). Toksicheskie dozy Cinka v ra-cione kur-nesushek. Aktual'nye Voprosy Nezaraznoj Patologii Zhivotnyh : Materialy I Mezhdunarodnoj Nauchno-Prakticheskoj Studencheskoj Konferencii. 31 Marta 2017 G., (1), 204–206. URL: http://lib.ugsha.ru:8080/handle/123456789/12582 (in Russian).

Sridhar, K., & Foods, S. (2017). Effect of graded concen-tration of organic zinc (Zn-glycinate ) on skin quality , haematological and serum biochemical constituents in broiler chicks Effect of graded concentration of or-ganic zinc (zinc glycinate) on skin quality, hematolog-ical and ser.

Sridhar, K., Nagalakshmi, D., & Rama Rao, S. V. (2015). Effect of graded concentration of organic zinc (zinc glycinate) on skin quality, hematological and serum biochemical constituents in broiler chicken. Indian Journal of Animal Sciences, 85(6), 643–648.

Star, L., van der Klis, J. D., Rapp, C., & Ward, T. L. (2012). Bioavailability of organic and inorganic zinc sources in male broilers. Poultry Science, 91(12), 3115–3120. doi: 10.3382/ps.2012-02314.

Şule, K., Umucalilar, H. D., Haliloǧlu, S., & Ipek, H. (2001). Effect of Dietary Vitamin A and Zinc on Egg Yield and Some Blood Parameters of Laying Hens. Turkish Journal of Veterinary and Animal Sciences, 25(5), 763–769.

Sunder, G. S., Kumar, C. V., Panda, A. K., Raju, M. V. L. N., & Rao, S. V. R. (2013). Effect of Supplemental Organic Zn and Mn on Broiler Performance, Bone Measures, Tissue Mineral Uptake and Immune Re-sponse at 35 Days of Age. Current Research in Poultry Science, 3(1), 1–11. doi: 10.3923/crpsaj.2013.1.11.

Sunder, G. S., Panda, A. K., Gopinath, N. C. S., Raju, M. V. L. N., Rao, S. V. R., & Kumar, C. V. (2006). Effect of Supplemental Manganese on Mineral Uptake by Tissues and Immune Response in Broiler Chickens. The Journal of Poultry Science, 43(4), 371–377. doi: 10.2141/jpsa.43.371.

Surai, P. F., & Fisinin, V. I. (2014). Selenium in poultry breeder nutrition: An update. Animal Feed Science and Technology, 191, 1–15. doi: 10.1016/j.anifeedsci.2014.02.005.

Świątkiewicz, S., Arczewska-Włosek, A., & Józefiak, D. (2014). The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World’s Poultry Science Journal, 70(03), 475–486. doi: 10.1017/S0043933914000531.

Tufarelli, V., & Laudadio, V. (2017). Manganese and its role in poultry nutrition: an overview. Journal of Ex-perimental Biology and Agricultural Sciences, 5(6), 749–754. doi: 10.18006/2017.5(6).749.754.

Urdzik, R. M. (2013). Problemy nestachі mіneralіv u ptahіvnyctvі: projavi, naslіdky ta shljahi vyrіshennja. Efektivne Ptahіvnictvo, 10(106), 38–40 (in Ukraini-an).

Villagómez-Estrada, S., Pérez, J. F., van Kuijk, S., Melo-Durán, D., Karimirad, R., & Solà-Oriol, D. (2020). Ef-fects of two Zinc supplementation levels and two Zinc and Copper sources with different solubility character-istics on the growth performance, carcass characteris-tics and digestibility of growing-finishing pigs. Journal of Animal Physiology and Animal Nutrition, (August), 1–13. doi: 10.1111/jpn.13447.

Vorobel', M. І., & Pіvtorak, Ja. І. (2011). Znachennja mіkroelementіv u zhittedіjal'nostі tvaryn. Naukovyi Vіsnyk LNUVMBT іmenі S.Z. Gzhyc'kogo, 13(3(50)), 54–60 (in Ukrainian).

Wang, B., Zhang, X., Yue, B., Ge, W., Zhang, M., Ma, C., & Kong, M. (2016). Effects of pantothenic acid on growth performance, slaughter performance, lipid me-tabolism, and antioxidant function of Wulong geese aged one to four weeks. Animal Nutrition, 2(4), 312–317. doi: 10.1016/j.aninu.2016.07.005.

Xinyan, M., Xiudong, L., Lin, L., Sufen, L., Liyang, Z., & Xugang, L. (2016). Determination of Dietary Iron Re-quirements by Full Expression of Iron-Containing En-zymes in Various Tissues of Broilers 1–3. The Journal of Nutrition, (5), 2267–2273. doi: 10.3945/jn.116.237750.participate.

Yalçinkaya, I., Çinar, M., Yildirim, E., Erat, S., Başalan, M., & Güngör, T. (2012). The effect of prebiotic and organic zinc alone and in combination in broiler diets on the performance and some blood parameters. Ital-ian Journal of Animal Science, 11(3), e55. doi: 10.4081/ijas.2012.e55.

Yatoo, M. I., Saxena, A., Deepa, P. M., Habeab, B. P., Devi, S., Jatav, R. S., & Dimri, U. (2013). Role of trace elements in animals: a review. Veterinary World, 6(12), 963–967. doi: 10.14202/vetworld.2013.963-967.

Zhabykpaeva, A. G., Ryshhanova, R. M., & Ermolina, S. A. (2017). Znachenie jessenceal'nyh mikrojelementov dlja zhiznedejatel'nosti ptic. Mnogoprofil'nij Nauchnij Zhurnal “Intellekt, Ideja, Innovacija”, 2, 27–35 (in Russian).

Zhao, J., Shirley, R. B., Vazquez-Anon, M., Dibner, J. J., Richards, J. D., Fisher, P., … Giesen, A. F. (2010). Ef-fects of chelated trace minerals on growth perfor-mance, breast meat yield, and footpad health in commercial meat broilers. The Journal of Applied Poultry Research, 19(4), 365–372. doi: 10.3382/japr.2009-00020.

Zhu, W., & Richards, N. G. J. (2017). Biological functions controlled by manganese redox changes in mononu-clear Mn-dependent enzymes. Essays in Biochemis-try, 61(2), 259–270. doi: 10.1042/EBC20160070.

Abstract views: 38
PDF Downloads: 16
Published
2021-04-05
How to Cite
Sakara, V., Melnyk, A., & Kharchenko, A. (2021). Preventive efficacy of trace elements chelates in poultry farming (review). Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(101), 113-123. https://doi.org/10.32718/nvlvet10119