Effect of stress on performance and physiological functions in pigs


Keywords: stress, pigs, behavior, performance, methods, conditions

Abstract

In recent decades, the intensity of the use of pigs has increased significantly. In such conditions, the body of animals is used almost to the limit of its capabilities. In this regard, the administration of many physiological functions is disrupted, the morbidity and decrease in the performance of pigs significantly increase. The increase in the level of drug use does not solve these issues. For example, the uncontrolled use of antibiotics can lead to even more significant problems - the development of antibiotic resistance. Despite this, in modern pig breeding, considerable attention is paid to the development and implementation of methods for the prevention of diseases in pigs. An important component of such activities is to ensure optimal conditions for the comfort and well-being of animals. This, in turn, implies a reduction in the negative impact of stress factors in raising and fattening pigs. The aim of our research was to get acquainted with modern literature data on the features of the influence of stressors on productivity and physiological functions of pigs. During the writing of this review article, we reviewed data from current research on the effects of stressors on the productivity and physiological functions of pigs in rearing and fattening. For this purpose, the funds of the scientific library of Bila Tserkva National Agrarian University, scientific research systems Science-Direct and PubMed were used. An important task of veterinary service of modern pig breeding complexes is to ensure optimal parameters of the microclimate, feeding quality feed, reducing the negative impact of stress factors. Ensuring proper housing conditions contributes to the improvement of qualitative and quantitative indicators of pig productivity (at slaughter, during slaughter, etc.). In this regard, we believe that a promising area of research is to study the effects of certain stressors and their combinations on the body of pigs and find methods to correct them.

Downloads

Download data is not yet available.

References

Borell, E., Dobson, H., & Prunier, A. (2007). Stress, behav-iour and reproductive performance in female cattle and pigs. Hormones and Behavior, 52(1), 130–138. doi: 10.1016/j.yhbeh.2007.03.014.

Cervantes, M., Cota, M., Arce, N., Castillo, G., Avelar, E., Espinoza, S., & Morales, A. (2016). Effect of heat stress on performance and expression of selected amino acid and glucose transporters, HSP90, leptin and ghrelin in growing pigs. J. Therm. Biol., 59, 69–76. doi: 10.1016/j.jtherbio.2016.04.014.

Cervantes, M., Ibarra, N., Vásquez, N., Reyes, F., Avelar, E., Espinoza, S., & Morales, A. (2017). Serum concen-trations of free amino acids in growing pigs exposed to diurnal heat stress fluctuations. J. Therm. Biol., 69, 69–75. doi: 10.1016/j.jtherbio.2017.06.008.

Cobanovic, N., Stajkovic, S., Blagojevic, B., Betic, N., Dimitrijevic, M., Vasilev, D., & Karabasil, N. (2020). The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeor-ol., 64(11), 1899–1909. doi: 10.1007/s00484-020-01977-y.

Cruzen, S. M., Boddicker, R. L., Graves, K. L., Johnson, T. P., Arkfeld, E. K., Baumgard, L. H., Ross, J. W., Saf-ranski, T. J., Lucy, M. C., & Lonergan, S. M. (2015). Carcass composition of market weight pigs subjected to heat stress in utero and during finishing. J. Anim. Sci., 93(5), 2587–2596. doi: 10.2527/jas.2014-8347.

da Fonseca de Oliveira, A. C., Vanelli, K., Sotomaior, C. S., Weber, S. H., & Costa, L. B. (2019). Impacts on performance of growing-finishing pigs under heat stress conditions: a meta-analysis. Vet. Res. Com-mun., 43(1), 37–43. doi: 10.1007/s11259-018-9741-1.

de Jong, I. C., Ekkel, E. D., van de Burgwal, J. A., Lam-booij, E., Korte, S. M., Ruis, M. A., Koolhaas, J. M., & Blokhuis, H. J. (1998). Effects of strawbedding on physiological responses to stressors and behavior in growing pigs. Physiol. Behav., 64(3), 303–310. doi: 10.1016/s0031-9384(98)00066-3.

Einarsson, S., Brandt, Y., Lundeheim, N., & Madej, A. (2008). Stress and its influence on reproduction in pigs: А review. Acta Vet. Scand., 50(1), 48. doi: 10.1186/1751-0147-50-48.

Fragomeni, B. O., Lourenco, D. A., Tsuruta, S., Andonov, S., Gray, K., Huang, Y., & Misztal, I. (2016). Modeling response to heat stress in pigs from nucleus and com-mercial farms in different locations in the United States. J. Anim Sci., 94(11), 4789–4798. doi: 10.2527/jas.2016-0536.

Holinger, M., Früh, B., Stoll, P., Pedan, V., Kreuzer, M., Bérard, J., & Hillmann, E. (2018). Long-term effects of castration, chronic intermittent social stress, provi-sion of grass silage and their interactions on perfor-mance and meat and adipose tissue properties in growing-finishing pigs. Meat. Sci., 145, 40–50. doi: 10.1016/j.meatsci.2018.05.018.

Horn, N., Ruch, F., Miller, G., Ajuwon, K. M., & Adeola, O. (2014). Impact of acute water and feed depriva-tion events on growth performance, intestinal charac-teristics, and serum stress markers in weaned pigs. J. Anim. Sci., 92(10), 4407–4416. doi: 10.2527/jas.2014-7673.

Huynh, T. T., Aarnink, A. J., Verstegen, M. W., Gerrits, W. J., Heetkamp, M. J., Kemp, B., & Canh, T. T. (2005). Effects of increasing temperatures on physiological changes in pigs at different relative humidities. J. Anim. Sci., 83(6), 1385–1396. doi: 10.2527/2005.8361385x.

Klein, S., Patzkéwitsch, D., Reese, S., & Erhard, M. (2016). Effekte einer frühen Sozialisierung von Ferkeln auf das Verhalten, unter anderem auf das Schwanzbeißen [Effects of socializing piglets in lactation on behav-iour, including tail-biting, in growing and finishing pigs]. Tierarztl Prax Ausg G Grosstiere Nutztiere, 44(3), 141–150. doi: 10.15653/TPG-160134.

Kouba, M., Hermier, D., & Le Dividich, J. (2001). Influ-ence of a high ambient temperature on lipid metabo-lism in the growing pig. J. Anim. Sci., 79(1), 81–87. doi: 10.2527/2001.79181x.

Kuwahara, M., Tsujino, Y., Tsubone, H., Kumagai, E., Tsutsumi, H., & Tanigawa, M. (2004). Effects of pair housing on diurnal rhythms of heart rate and heart rate variability in miniature swine. Exp. Anim., 53(4), 303–309. doi: 10.1538/expanim.53.303.

Larson, C. T., Gross, W. B., & Davis, J. W. (1985). Social stress and resistance of chicken and swine to Staphy-lococcus aureus challenge infections. Can. J. Comp. Med., 49(2), 208–210. URL: https://pubmed.ncbi.nlm. nih.gov/4016586.

Le Sciellour, M., Zemb, O., Hochu, I., Riquet, J., Gilbert, H., Giorgi, M., Billon, Y., Gourdine, J. L., & Renau-deau, D. (2019). Effect of chronic and acute heat challenges on fecal microbiota composition, produc-tion, and thermoregulation traits in growing pigs1,2. J. Anim. Sci., 97(9), 3845–3858. doi: 10.1093/jas/skz222.

Lebret, B., Meunier-Salaün, M. C., Foury, A., Mormède, P., Dransfield, E., & Dourmad, J. Y. (2006). Influence of rearing conditions on performance, behavioral, and physiological responses of pigs to preslaughter han-dling, carcass traits, and meat quality. J. Anim. Sci., 84(9), 2436–2447. doi: 10.2527/jas.2005-689.

Liu, F., Cottrell, J. J., Wijesiriwardana, U., Kelly, F. W., Chauhan, S. S., Pustovit, R. V., Gonzales-Rivas, P. A., DiGiacomo, K., Leury, B. J., Celi, P., & Dunshea, F. R. (2017). Effects of chromium supplementation on physiology, feed intake, and insulin related metabo-lism in growing pigs subjected to heat stress. Transl. Anim. Sci., 1(1), 116–125. doi: 10.2527/tas2017.0014.

Lyte, J. M., & Lyte, M. (2019). Review: Microbial endocrinology: intersection of microbiology and neurobiology matters to swine health from infection to behavior. Animal, 13(11), 2689–2698. doi: 10.1017/S1751731119000284.

Mayorga, E. J., Ross, J. W., Keating, A. F., Rhoads, R. P., & Baumgard, L. H. (2020). Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology, 154, 73–83. doi: 10.1016/j.theriogenology.2020.05.023.

Morales, A., Cota, S. E., Ibarra, N. O., Arce, N., Htoo, J. K., & Cervantes, M. (2016). Effect of heat stress on the serum concentrations of free amino acids and some of their metabolites in growing pigs. J. Anim. Sci., 94(7), 2835–2842. doi: 10.2527/jas.2015-0073.

Morales, A., Grageola, F., García, H., Arce, N., Araiza, B., Yáñez, J., & Cervantes, M. (2014). Performance, se-rum amino acid concentrations and expression of se-lected genes in pair-fed growing pigs exposed to high ambient temperatures. J Anim Physiol Anim Nutr (Berl), 98(5), 928–935. doi: 10.1111/jpn.12161.

Munsterhjelm, C., Valros, A., Heinonen, M., Hälli, O., Siljander-Rasi, H., & Peltoniemi, O. A. (2010). Envi-ronmental enrichment in early life affects cortisol pat-terns in growing pigs. Animal, 4(2), 242–249. doi: 10.1017/S1751731109990814.

O'Connor, E. A., Parker, M. O., McLeman, M. A., Dem-mers, T. G., Lowe, J. C., Cui, L., Davey, E. L., Owen, R. C., Wathes, C. M., & Abeyesinghe, S. M. (2010). The impact of chronic environmental stressors on growing pigs, Sus scrofa (Part 1): stress physiology, production and play behaviour. Animal, 4(11), 1899–1909. doi: 10.1017/S1751731110001072.

Pearce, S. C., Mani, V., Boddicker, R. L., Johnson, J. S., Weber, T. E., Ross, J. W., Baumgard, L. H., & Gabler, N. K. (2012). Heat stress reduces barrier function and alters intestinal metabolism in growing pigs. J. Anim. Sci., 90(4), 257–259. doi: 10.2527/jas.52339.

Pearce, S. C., Gabler, N. K., Ross, J. W., Escobar, J., Pa-tience, J. F., Rhoads, R. P., & Baumgard, L. H. (2013). The effects of heat stress and plane of nutrition on metabolism in growing pigs. J. Anim. Sci., 91(5), 108–118. doi: 10.2527/jas.2012-5738.

Pearce, S. C., Mani, V., Weber, T. E., Rhoads, R. P., Pa-tience, J. F., Baumgard, L. H., & Gabler, N. K. (2013). Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs. J. Anim. Sci., 91(11), 5183–5193. doi: 10.2527/jas.2013-6759.

Pearce, S. C., Sanz-Fernandez, M. V., Hollis, J. H., Baum-gard, L. H., & Gabler, N. K. (2014). Short-term expo-sure to heat stress attenuates appetite and intestinal integrity in growing pigs. J. Anim. Sci., 92(12), 5444–5454. doi: 10.2527/jas.2014-8407.

Pearce, S. C., Mani, V., Boddicker, R. L., Johnson, J. S., Weber, T. E., Ross, J. W., Rhoads, R. P., Baumgard, L. H., & Gabler, N. K. (2014). Heat stress reduces intesti-nal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS One, 8(8), 702–715. doi: 10.1371/journal.pone.0070215.

Pearce, S. C., Sanz Fernandez, M. V., Torrison, J., Wilson, M. E., Baumgard, L. H., & Gabler, N. K. (2015). Die-tary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J. Anim. Sci., 93(10), 4702–4713. doi: 10.2527/jas.2015-9018.

Poullet, N., Bambou, J.C., Loyau, T., Trefeu, C., Feuillet, D., Beramice, D., Bocage, B., Renaudeau, D., & Gourdine, J. L. (2019). Effect of feed restriction and refeeding on performance and metabolism of Euro-pean and Caribbean growing pigs in a tropical climate. Sci Rep., 9(1), 4878. doi: 10.1038/s41598-019-41145-w.

Qu, H., & Ajuwon, K. M. (2018). Metabolomics of heat stress response in pig adipose tissue reveals alteration of phospholipid and fatty acid composition during heat stress. J. Anim. Sci., 96(8), 3184–3195. doi: 10.1093/jas/sky127.

Renaudeau, D., Gourdine, J. L., & St-Pierre, N. R. (2011). A meta-analysis of the effects of high ambient tem-perature on growth performance of growing-finishing pigs. J. Anim. Sci., 89(7), 2220–2230. doi: 10.2527/jas.2010-3329.

Ross, J. W., Hale, B. J., Seibert, J. T., Romoser, M. R., Adur, M. K., Keating, A. F., & Baumgard, L. H. (2017). Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol. Reprod. Dev., 84(9), 934–945. doi: 10.1002/mrd.22859.

Schrøder-Petersen, D. L., & Simonsen, H. B. (2001). Tail biting in pigs. Vet. J., 162(3), 196–210. doi: 10.1053/tvjl.2001.0605.

Schwerin, M., Dorroch, U., Beyer, M., Swalve, H., Metges, C. C., & Junghans, P. (2002). Dietary protein modifies hepatic gene expression associated with oxidative stress responsiveness in growing pigs. FASEB J., 16(10), 1322–1324. doi: 10.1096/fj.01-0734fje.

Scroggs, L. V., Kattesh, H. G., Morrow, J. L., Stalder, K. J., Dailey, J. W., Roberts, M. P., Schneider, J. F., & Sax-ton, A. M. (2002). The effects of split marketing on the physiology, behavior, and performance of finish-ing swine. J. Anim. Sci., 80(2), 338–345. doi: 10.2527/2002.802338x.

Seelenbinder, K. M., Zhao, L. D., Hanigan, M. D., Hulver, M. W., McMillan, R. P., Baumgard, L. H., Selsby, J.T., Ross, J. W., Gabler, N. K., & Rhoads, R. P. (2018). Ef-fects of heat stress during porcine reproductive and respiratory syndrome virus infection on metabolic re-sponses in growing pigs. J. Anim. Sci., 96(4), 1375–1387. doi: 10.1093/jas/sky057.

Serviento, A. M., Lebret, B., & Renaudeau, D. (2020). Chronic prenatal heat stress alters growth, carcass composition, and physiological response of growing pigs subjected to postnatal heat stress. J. Anim. Sci., 98(5), doi: 10.1093/jas/skaa161.

Sierżant, K., Perruchot, M. H., Merlot, E., Le Floc'h, N., & Gondret, F. (2019). Tissue-specific responses of anti-oxidant pathways to poor hygiene conditions in grow-ing pigs divergently selected for feed efficiency. BMC Vet. Res., 15(1), 341. doi: 10.1186/s12917-019-2107-2.

Soler, L., Gutiérrez, A., Escribano, D., Fuentes, M., & Ce-rón, J. J. (2019). Response of salivary haptoglobin and serum amyloid A to social isolation and short road transport stress in pigs. Res. Vet. Sci., 95(1), 298–302. doi: 10.1016/j.rvsc.2013.03.007.

Sutherland, M. A., Backus, B. L., & McGlone, J. J. (2014). Effects of Transport at Weaning on the Behavior, Physiology and Performance of Pigs. Animals (Basel), 4(4), 657–669. doi: 10.3390/ani4040657.

Sutherland, M. A., Niekamp, S. R., Johnson, R. W., Van Alstine, W. G., & Salak-Johnson, J. L. (2007). Heat and social rank impact behavior and physiology of PRRS-virus-infected pigs. Physiol. Behav., 90(1), 73–81. doi: 10.1016/j.physbeh.2006.08.029.

Sutherland, M. A., Niekamp, S. R., Rodriguez-Zas, S. L., & Salak-Johnson, J. L. (2006). Impacts of chronic stress and social status on various physiological and performance measures in pigs of different breeds. J. Anim. Sci., 84(3), 588–596. doi: 10.2527/2006.843588x.

Tao, X., & Xu, Z. (2010). MicroRNA transcriptome in swine small intestine during weaning stress. PLoS One, 8(11), e79343. doi: 10.1371/journal.pone.0079343.

Telles, F. G., Luna, S. P., Teixeira, G. L., & Berto, D. A. (2016). Long-term weight gain and economic impact in pigs castrated under local anaesthesia. Vet. Anim. Sci., 1–2, 36–39. doi: 10.1016/j.vas.2016.11.003.

Turin, L., Torinesi, R., & Pastorelli, G. (2019). Real-time PCR detection of the effect of postweaning on the expression of cytokines and NF-kB in piglets. J Biol Regul Homeost Agents, 33(6), 1737–1745. doi: 10.23812/19-342-A.

Valpotić, H., Mršić, G., Gršković, B., Špoljarić, D., Kezić, D., Srečec, S., Mataušić-Pišl, M., Lacković, G., Capak, D., Mihelić, D., Vlahović, K., Valpotić, I., Pirkić, A., Andjelinovic, D., & Popović, M. (2013). Effect of pol-yoxyethylene and polyoxypropylene nonionic block copolymers on performance and recruitment of im-mune cell subsets in weaned pigs. Acta. Vet. Scand., 55(1), 54. doi: 10.1186/1751-0147-55-54.

Waltz, X., Baillot, M., Connes, P., Bocage, B., & Renau-deau, D. (2014). Effects of hydration level and heat stress on thermoregulatory responses, hematological and blood rheological properties in growing pigs. PLoS One, 9(7). doi: 10.1371/journal.pone.0102537.

Weller, M. M., Alebrante, L., Campos, P. H., Saraiva, A., Silva, B. A., Donzele, J. L., Oliveira, R. F., Silva, F. F., Gasparino, E., Lopes, P. S., & Guimarães, S. E. (2014). Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression. Animal, 7(12), 1985–1993. doi: 10.1017/S1751731113001535.

Wellock, I. J., Emmans, G. C., & Kyriazakis, I. (2003). Predicting the consequences of social stressors on pig food intake and performance. J. Anim Sci., 81(12), 2995–3007. doi: 10.2527/2003.81122995x.

Wellock, I. J., Emmans, G. C., & Kyriazakis, I. (2004). Modeling the effects of stressors on the performance of populations of pigs. J. Anim. Sci., 82(8), 2442–2450. doi: 10.2527/2004.8282442x.

White, H. M., Richert, B. T., Schinckel, A. P., Burgess, J. R., Donkin, S. S., & Latour, M. A. (2008). Effects of temperature stress on growth performance and bacon quality in grow-finish pigs housed at two densities. J. Anim. Sci., 86(8), 1789–1798. doi: 10.2527/jas.2007-0801.

White, R. R., Miller, P. S., & Hanigan, M. D. (2015). Eval-uating equations estimating change in swine feed in-take during heat and cold stress. J. Anim. Sci., 93(11), 5395–5410. doi: 10.2527/jas.2015-9220.

Wooten, H., McGlone, J. J., Wachtel, M., Thompson, G., Rakhshandeh, A. R., & Rakhshandeh, A. (2019). A glucocorticoid receptor agonist improves post-weaning growth performance in segregated early-weaned pigs. Animal, 13(9), 1972–1981. doi: 10.1017/S1751731118003634.

Yu, J., Yin, P., Liu, F., Cheng, G., Guo, K., Lu, A., Zhu, X., Luan, W., & Xu, J. (2010). Effect of heat stress on the porcine small intestine: a morphological and gene ex-pression study. Comp. Biochem. Physiol. A Mol. In-tegr. Physiol., 156(1), 119–128. doi: 10.1016/j.cbpa.2010.01.008.

Yuan, W., Wu, J. Y., Zhao, Y. Z., Li, J., Li, J. B., Li, Z. H., & Li, C. S. (2019). Effects of Mild Hypothermia on Cardiac and Neurological Function in Piglets Under Pathological and Physiological Stress Conditions. Ther. Hypothermia Temp. Manag., 9(2), 136–145. doi: 10.1089/ther.2018.0026.

Zhao, L., McMillan, R. P., Xie, G., Giridhar, S. G. L. W., Baumgard, L. H., El-Kadi, S., Selsby, J., Ross, J., Ga-bler, N., Hulver, M. W., & Rhoads, R. P. (2018). Heat stress decreases metabolic flexibility in skeletal muscle of growing pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol., 315(6), 1096–1106. doi: 10.1152/ajpregu.00404.2017.

Zhou, Z., Zhang, J., Zhang, X., Mo, S., Tan, X., Wang, L., Li, J., Li, Y., Ding, X., Liu, X., Ma, X., Yang, H., & Yin, Y. (2019). The production of short chain fatty acid and colonic development in weaning piglets. J. Anim. Physiol. Anim. Nutr. (Berl)., 103(5), 1530–1537. doi: 10.1111/jpn.13164.

Abstract views: 69
PDF Downloads: 31
Published
2021-03-30
How to Cite
Stovbetska, L., Poroshinska, O., Nischemenko, M., Shmayun, S., Emelyanenko, A., & Koziy, V. (2021). Effect of stress on performance and physiological functions in pigs. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(102), 14-23. https://doi.org/10.32718/nvlvet10203