Dynamics of cytokines in osteosis splinter fractures replacement in dogs with hydroxyapatite ceramics silicon-doped


Keywords: interleukins, composite materials, splinter bone fractures, reparative osteogenesis, transforming growth factor

Abstract

Among the entire public of fractures of long bones, more complications of reparative osteogenesis occur fragmental fractures. Their significant defects, which arise as a result of the removal of non-viable fragments, cause disturbances in local hemodynamics and microcirculation and loss of osteoconduction in the area of injury, lead to a loss of the reparative potential of bone tissue in the defect zone, and the methods of osteosynthesis do not provide restoration of osteoconduction and do not have osteointegration properties. For osteosis, a number of composite materials have been proposed, among which ceramics based on calcium phosphates are considered the most promising, which is confirmed by previous clinical, radiological and histomorphological studies. The aim of the study is to determine the dynamics of the blood levels of TGF-β and interleukins IL-1β and IL-10 for osteosis replacement of splinter bone fractures in dogs with calcium phosphate ceramics doped with silicon. Material and research methods: a control (n = 7) and research group (n = 7) dogs with accidental splinter fractures of long bones were formed. In both groups, extracortical osteosynthesis was performed with a support plate from an unalloyed titanium alloy. In the control group, bone defects were left to heal under a blood clot, and in the experimental group they were replaced with ceramics (GTlKg-3). Blood samples were taken after trauma no later than on the 48th day, and on the third, twelfth, twenty-first, forty-second and 60th days after surgical treatment. The enzyme immunoassay was used to determine the serum levels of interleukins IL-1β and IL-10 and transforming growth factor (TGF-β) тhat for a bureta reaction is a bit of a home-made bottle. The study results showed an anti-inflammatory cytokine profile with physiological norms in dogs. In case of bone injury, it becomes pro-inflammatory in nature, triggers the process of osteoresorption in the fracture area. At the same time, during reparative osteogenesis after extracortical osteosynthesis for splinter fractures, proinflammatory cytokinemia acquires a permanent character with a peak on the forty-second day, and this implies inhibition of metaplasia of cartilaginous regenerate into bone, that is, it slows down the consolidation of the fracture. However, in the case of osteosis with ceramics, the level of pro-inflammatory cytokinemia is significantly lower and continues during the first 12 days with a peak on the third day, during the inflammatory-resorptive stage. However, the key in understanding the effectiveness of osteosis was the dynamics of TGF-β, which showed its biphasic hyperreactivity in control animals, while in experimental animals, its balanced production was noted. Conclusion. Osteosis replacement of bone defects in long tubular bones in dogs with hydroxyapatite with β-tricalcium phosphate ceramics doped with silicon is accompanied by moderate cytokinemia in accordance with the course of the inflammatory-resorptive stage and the phase of remodeling with a peak of induction of transforming growth factor during the period of active osteogenesis forty-second course of reparative osteogenesis.

Downloads

Download data is not yet available.

References

Abd El Raouf, M., Zhang, Y., Serrano, J. C., & Miron, R. J. (2017). Novel Natural Bovine Bone Graft with Inte-grated Atelo-Collagen Type I: Atelocollagen Bovine Bone Mineral (ABBM) Characterization In-vivo. Per-iodontics and Prosthodontics, 3(1). doi: 10.21767/2471-3082.100029.

Alireza, N., Seyed, J. A., Roza, V., Ashraf, H., & Webster, T. J. (2017). A review of fibrin and fibrin composites for bone tissue engineering. International Journal of Nanomedicine, 12(12), 4937–4961. doi: 10.2147/IJN.S124671.

Andrіec, V. G. (2014). Klіnіko-rentgenologіchna harakterystyka ta cytokіnova reguljacіja reparatyvnogo osteogenezu u vypadku іntrameduljarnogo osteosyntezu kіstok i sobak. Naukovyi vіsnyk Lvіvskogo nacіonalnogo unіversytetu veterynarnoi medycyny ta bіotehnologіi іm. S.G. Gzhickogo, 16(3), 27–37 (in Ukrainian).

Chelsea, S. B., Robert, L. Z., Patrick, А., Alekos, T., Jason, W. A., Jaimo, A., Theodore, M., Ralph, S. M., & Kurt, D. H. (2019). Cellular Biology of Fracture Healing. Published by Wiley Periodicals, Inc. J Orthop Res, 37(2), 35–50. doi: 10.1002/jor.24170.

Chen, G., Deng, C., & Li, Y. P. (2012). TGF-β and BMP Signaling in Osteoblast Differentiation and Bone For-mation. International Journal of Biological Sciences, 8(2), 272–288. doi: 10.7150/ijbs.2929.

Dohan, D. M., Choukroun, J., Diss, A., Dohan, S. L., Do-han, A. J. J., Mouhyi, J., & Gogly, B. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concen-trate. Part II: Platelet-related biologic features. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiolo-gy, and Endodontology, 101(3), 45–50. doi: 10.1016/j.tripleo.2005.07.009.

Dubrov, V. E., Klimashina, E. S., & Shherbakov, I. M. (2019). Jeksperimental'naja ocenka svojstv 3D_poristogo materiala na osnove fosfata kal'cija na modeli monokortikal'nogo diafizarnogo defekta bedrennoj kosti krysy. Bjulleten' eksperimental'noi biologii i medycyny, 167(3), 377–380 (in Russian).

Finkemeier, C. G. (2002). Bone-Grafting and Bone-Graft Substitutes J Bone Joint Surg. Am, 84.

Goljuk, E. L., Javorska, V. І., Bezdenezhnih, N. O., Kozak, T. P., & Saulenko, K. O. (2019). Rіven TGF-β v zbagachenіj trombocitami plazmі u pacіentіv іz zahvorjuvannjam ta travmamy oporno-ruhovogo aparatu. Orygіnalnі doslіdzhennja, 7(2), 108–112 (in Ukrainian).

Grignani, G., & Maiolo, A. (2000). Cytokines and hemo-stasis. Haematologica, 85(2), 967–972.

Haaland, P. J., Sjostorm, L., Devor, M., & Haug, A. (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Veteri-nary and Comparative Orthopaedics and Traumatol-ogy, 22(4), 309–315. doi: 10.3415/VCOTO8-05-0044.

Hart, N. H., Newton, R. U., Tan, J., Rantalainen, T., Chiv-ers, P., Siafarikas, A., & Nimphius, S. (2020). Biologi-cal Basis of Bone Strength: Anatomy, Physiology and Measurement. Musculoskelet Neuronal Interact, 20(3), 347–371. URL: www.researchgate.net/ publica-tion/340939391.

Jiliang, L., & David, L. S. (2014). Fracture Healing. Basic and Applied Bone Biology, 2014, 205–223. doi: 10.1016/B978-0-12-416015-6.00010-1.

Korzh, N. A., Deduh, N. V., & Nikolchenko, O. A. (2006). Reparativnaja regeneracija kosti: sovremennyj vzgljad na problemu. Sistemnye faktory, vlijajushhie na zazhivlenie pereloma. Ortopedija, travmatologija i protezirovanie, 2, 93‒99 (in Russian).

Kostiv, R. E., Kalinichenko, S. G., & Matveeva, N. Ju. (2017). Troficheskie faktory rosta kostnoj tkani, ih morfogeneticheskaja harakteristika i klinicheskoe znachenie. Pacific Medical Journal, 1, 10–16. doi: 10.17238/PmJ1609-1175.2017.1.10–16.

Koval, T. V., Ishchuk, T. V., Grebinyk, D. M., Raetska, Ya. B., Sokur, O. V., Savchuk, O. M., & Ostapchenko, L. I. (2018). Matrix metalloproteinase functioning in case of esophagus acid burn. Biomedical Research, 29(16), 3169–3173. doi: 10.4066/biomedicalresearch.29-18-394.

Kunder, E. V., Litvjakova, A. M., Janchenko, V. V., Generalov, I. I., & Volkova, M. V. (2007). Patogeneticheskoe i diagnosticheskoe znachenie interlejkina 1 beta pri spondiloartropatijah. Vestnik Vitebskogo gosudarstvennogo medicinskogo universiteta, 6(3), 51–55. URL: http://elib.vsmu.by/ handle/123/8522 (in Russian).

Libardoni, R. N., Serafini, G. M. C., Oliveira, C., Schimites, P. I., Chaves, R. O., Feranti, J. P. S., Costa, C. A. S., Amaral, A. S., Raiser, A. G., & Soares, A. V. (2016). Appendicular fractures of traumatic etiology in dogs: 955 cases (2004-2013). Ciência Rural, 46(3), 542–546. doi: 10.1590/0103-8478cr20150219.

Malyshkina, S. V., Chzhou, L., & Deduh, N. V. (2014). Strukturnaja perestrojka kostnoj tkani v uslovijah zapolnenija kostnyh polostej sinteticheskim uglerodnym biomaterialom. Ortopedija, travmatologija i protezirovanie, 3, 30–37. doi: 10.15674/0030-59872014330-37 (in Russian).

Marcela, A. O., Qaisar, N., & Aldo, R. B. (2020). Silicate-based nanoceramics 9in regenerative medicine. Nanostructured Biomaterials for Regenerative Medi-cine, 2020, 254–273. doi: 10.1016/B978-0-08-102594-9.00009-7.

Melnіkov, V. V. (2021). Klіnіko-patogenetychne znachennja cytokіnіv ta korekcіja ih rіvnja pry hіrurgіchnіj іnfekcіi u tvaryn: avtoref. dis. na zdobuttja nauk. stupenja kand. veterinarnyh nauk: spec. 16.00.05 – veterynarna hіrurgіja. Bіla Cerkva (in Ukrainian).

Nandi, S. K., Ghosh, S. K., Kundu, B., De, D. K., & Basu, D. (2008). Evaluation of new porous β-tricalcium phosphate ceramic as bone substitute in goat model. Small Ruminant Research, 75(2-3), 144–153. doi: 10.1016/j.smallrumres.2007.09.006.

Nojiria, A., Nishidoa, T., Horinakaa, O., Akiyoshib, H., Ohashib, F., & Yamaguchia, T. (2015). Initial Clinical Application and Results of the Advanced Locking Plate System (ALPS) in Small Animal Orthopedics: Two Hundred Eighty Two Procedures. Intern J Appl Res Vet Med, 13(1), 64–79.

Nіkіtіn, E. V., Chaban, T. V., & Serveckij, S. K. (2007). Suchasnі ujavlennja pro systemu cytokіnіv. Іnfekcіjnі hvoroby, 21(2), 64–69. doi: 10.11603/1681-2727.2007.2.1038 (in Ukrainian).

Oliveira, H. L., Wellington, L. O., Carlos, E. C., Neftali, L. V., Silva, A. S., Guim, T. N., Dellagostin, O. A., & Piva, E. (2017). Histological Evaluation of Bone Repair with Hydroxyapatite, 101(4), 341–354. doi: 10.1007/s00223-017-0294-z.

Pascale, M. R., Sommese, L., Casamassimi, A., & Napoli, C. (2015). Platelet Derivatives in Regenerative Medi-cine: An Update. Transfusion Medicine Reviews, 29(1), 52–61. doi: 10.1016/j.tmrv.2014.11.001.

Raetska, Y. B., Chornenka, N. M., Koval, T. V., Savchuk, O. M., Beregova, T. V., & Ostapchenko, L. I., (2017). Cytokine profile indicators in rat blood serum in a model of esophagus burn induced by antioxidant chemical preparation. Biomed Res Ther, 4(9), 1591–1606. URL: http://www.bmrat.org/index.php/BMRAT/article/view/367.

Rahmati, M., Pennisi, C. P., Budd, E., Mobasheri, A., & Mozafari, M. (2018). Biomaterials for Regenerative Medicine: Historical Perspectives and Current. Adv Exp Med Biol – Cell Biology and Translational Medi-cine, 19(1), 1–19. doi: 10.1007/5584_2018_278.

Reznik, L. B., Erofeev, S. A., Stasenko, I. V., & Borzunov, D. Y. (2019). Morphological assessment of osteointe-gration of various implants for management of long bone defects (experimental study). Genij Ortopedii, 25(3), 318–323. doi: 10.18019/1028-4427-2019-25-3-318-323.

Rublenko, M. V., Chemerovskij, V. O., Vlasenko, V. M., & Uljanchich, N. V. (2018). Ocіnka osteoіntegracіjnukh і osteoіnduktivnih vlastivostej keramіky, legovanoi kremnіem, za modelnih perelomіv stegnovoi kіstky u krolіv. Naukovyi vіsnyk veterinarnoi medycyny, 144(2), 37–46. doi: 10.33245/2310-4902-2018-144-2-37-46 (in Ukrainian).

Rublenko, M. V., Chemerovskiy, V. A., Andriiets, V. G., Ulyanchich, N. V., Kolomiets, V. V., & Koryak, A. S. (2020). Evaluation of usage of silicon-doped hydroxyapatite ceramics for treatment of fragmented bone fractures in dogs. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary sciences, 22(99), 29–37. doi: 10.32718/nvlvet9905.

Rublenko, M. V., Dudka, V. B., & Semenjak S. A. (2015). Morfo-rentgenologіchna і bіohіmіchna harakter-ystyky reparatyvnogo osteogenezu za zamyshhennja kіstkovykh defektіv bіomіnom-GT u tvaryn. Nau-kovyi vіsnyk veterynarnoi medycyny, 99(1), 98–106 (in Ukrainian).

Rublenko, M. V., Semenjak, S. A., & Uljanchich, N. V. (2014). Dinamіka bіomarkerіv reparativnogo osteogenezu za umov zamіshhennja kіstkovih defektіv. Naukovij vіsnik LNUVMBT іmenі S. Z. Gzhickogo, 16(3), 287–294 (in Ukrainian).

Rublenko, S. V., & Eroshenko, O. V. (2012). Monіtoring veterynarnoi dopomogy і struktura hіrurgіchnoi patologіi sered drybnyh domashnіh tvaryn v umovah mіs'koi klіnіky. Vіsnyk Sumskogo Nacіonalnogo agrarnogo Unіversitetu, 30(1), 150–154 (in Ukrainian).

Shaganenko, V. S. (2012). Kliniko-patohenetychna rol oksydu azotu ta korektsiia yoho rivnia za khirurhichnoi patolohii zapalnoho renezu v tvaryn riznykh vydiv: avtoref. dys. na zdobuttia nauk. stupenia kand. vet. nauk: spets. 16.00.05 “Veterinarna hіrurgіja”, Bіla Cerkva (in Ukrainian).

Teljatnіkov, A. V. (2013). Poshyrennia perelomiv kistok u sobak. Naukovyi visnyk veterynarnoi medytsyny, 101(1), 149–153 (in Ukrainian).

Uljanchich, N. V., (2021). Formuvannia vlastyvostei kaltsii-fosfatnoi keramiky dlia reheneratyvnoi medytsyny: avtoref. dys. na zdobuttia nauk. stupenia kand. tekhnichnykh nauk: spets. 05.02.01 – Materialoznavstvo. Kyiv (in Ukrainian).

Еroshenko, O. V. (2013). Bilky hostroi fazy i markery spoluchnoi tkanyny za reparatyvnoho osteohenezu ta yoho farmakolohichna korektsiia v sobak: avtoref. dys. na zdobuttia nauk. stupenia kand. vet. nauk: spets. 16.00.05 “Veterynarna khirurhiia”, Bila Tserkva (in Ukrainian).

Abstract views: 138
PDF Downloads: 116
Published
2021-06-19
How to Cite
Rublenko, M., Chemerovskiy, V., Ulyanchich, N., Savchuk, A., Halenova, T., & Raksha, N. (2021). Dynamics of cytokines in osteosis splinter fractures replacement in dogs with hydroxyapatite ceramics silicon-doped. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(102), 29-36. https://doi.org/10.32718/nvlvet10205

Most read articles by the same author(s)