Histomorphological characteristics of bone replacement in rabbits with hydroxyapatite ceramics and Platelet-Rich Fibrin


  • S. М. Shevchenko Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine https://orcid.org/0000-0002-9155-0619
  • M. V. Rublenko Bila Tserkva National Agrarian University, Bila Tserkva, Ukraine https://orcid.org/0000-0001-9690-9531
  • N. V. Ulyanchich Institute of Problems of Materials Science named after I. N. Frantsevich National Academy of Sciences, Kyiv, Ukraine https://orcid.org/0000-0002-8806-0280
  • P. P. Klymenko Institute of Gerontology named after D. F. Chebotarev of the National Academy of Medical Sciences of Ukraine, laboratory of morphology and cytology, Kiev, Ukraine https://orcid.org/0000-0001-9905-1956
Keywords: autograft, autofibrin, hydroxyapatite with β-tricalcium phosphate, spongy bone tissue, compact bone tissue, osteoblasts, osteocytes

Abstract

The results of a histomorphological study of bone regenerates in rabbits after osteosubstitution with platelet-rich fibrin and its combination with hydroxyapatite granules with β-tricalcium phosphate in spongy and compact bone tissue at different periods of reparative osteogenesis are presented. Three groups of rabbits were formed. In the control group, the defects were left to heal under the blood clot. Bone lesions in the first experimental group were filled with platelet-rich fibrin, in the second – with a combination of platelet-rich fibrin and hydroxyapatite with β-tricalcium phosphate. All animals were kept in the same conditions of feeding and housing, had unlimited access to water. During the study, the rabbits were monitored clinically. The animals were taken out of the experiment on the 14th, 21st and 42nd days, samples of bone tissue were taken, they were fixed, decalcified, dehydrated in alcohols of increasing concentration and embedded in paraffin. In the presented study, it is most likely that the newly formed bone tissue is formed precisely due to osteoinduction in the experimental groups. When using granules of hydroxyapatite and β-tricalcium phosphate with platelet-rich fibrin, bone regenerate is between the composite granules and is not associated with contact with the maternal bone. Its cells appear in different places of the defect. In the spongy bone tissue on the 21st day, regeneration proceeded more fully and faster in the second experimental group, as evidenced by the significant density of cells of the osteoblastic row, the thickness of the bone trabeculae and their volume, filling the site of the defect. On the 42nd day, in the second experimental group, when using a combination of autobiomaterial and hydroxyapatite granules with β-tricalcium phosphate, the regenerate contained a significantly larger number of osteogenic cells in the thickness of the trabeculae, which indicated a more intensive course of reparative osteogenesis in comparison with the first experimental and control groups. In the compact bone on day 21, regeneration was more complete and faster in the second experimental group. On the 42nd day, according to the degree of maturity of the bone regenerate, calcium-phosphate ceramics in combination with platelet-rich fibrin optimizes reparative osteogenesis most clearly. According to the degree of intensity of the osteoregeneration process, the groups can be placed in the following sequence: control ˂PRF˂PRF+HA/β-TCP–700. According to histomorphological characteristics, the combination of hydroxyapatite with β-tricalcium phosphate and platelet-rich fibrin gives greater osteoinduction to the composite material, which is confirmed by the high cell density, namely of osteoblasts and osteocytes. The use of PRF in combination with other materials may become promising for the correction of reparative osteogenesis in conditions of limited or reduced regenerative potential of bone tissue.

Downloads

Download data is not yet available.

References

Bansal, S., Garg, A., Khurana, R., & Chhabra, P. (2017). Platelet-rich fibrin or platelet-rich plasma – Which one is better? An opinion. Indian J Dent Sci, 9, 49–52. doi: 10.4103/IJDS.IJDS_55_17.

Błaszczyk, B., Kaspera, W., Ficek, K., Kajor, M., Binkow-ski, M. et al. (2018). Effects of Polylactide Copolymer Implants and Platelet-Rich Plasma on Bone Regener-ation within a Large Calvarial Defect in Sheep. Bio-Med Research International, 2018, 11. doi: 10.1155/2018/4120471.

Bur'janov, O. A., Omel'chenko, T. N., Jarmoljuk, Ju. A., & Vakulich, M. V. (2017). Regeneracija kosti pri ispol'zovanii autogennoj kostnoj tkani i fibrina, obo-gashhennogo trombocitami. Visnyk problem biolohii i medytsyny, 1(135), 96–99 (in Russian).

Chatterjee, A., & Debnath, K. (2019). Comparative eval-uation of growth factors from platelet concentrates: An in vitro study. J Indian Soc Periodontol, 23(4), 322–328. doi: 10.4103/jisp.jisp_678_18.

Chou, T., Chang, H.-P., & Wang, J. (2020). Autologous platelet concentrates in maxillofacial regenerative therapy. Kaohsiung J Med Sci., 36(5), 305–310. doi: 10.1002/kjm2.12192.

Croes, M., Boot, W., Kruyt, M. C. et al. (2017). Inflam-mation-Induced Osteogenesis in a Rabbit Tibia Mod-el. Tissue engineering: Part C, 23(11), 673–685. doi: 10.1089/ten.tec.2017.0151.

Cuervo, B., Rubio, M., Chicharro, D., Damiá, E., et al. (2020). Objective Comparison between Platelet Rich Plasma Alone and in Combination with Physical Therapy in Dogs with Osteoarthritis Caused by Hip Dysplasia. Animals, 10(2), 175. doi: 10.3390/ani10020175.

Eftekhari, H., Jahandideh, A., Asghari, A., et al. (2018). Histopathological evaluation of polycaprolactone nanocomposite compared with tricalcium phosphate in bone healing. Journal of Veterinary Research, 62(3), 385–394. doi: 10.2478/jvetres-2018-0055.

Farghali, H. A., AbdElKader, N. A., AbuBakr, H. O. et al. (2019). Antimicrobial action of autologous platelet-rich plasma on MRSA-infected skin wounds in dogs. Sci Rep, 9, 12722. doi: 10.1038/s41598-019-48657-5.

Farghali, H. A., AbdElKader, N. A., Khattab, M. S., & AbuBakr, H. O. (2017). Evaluation of subcutaneous infiltration of autologous platelet-rich plasma on skin-wound healing in dogs. Bioscience Reports, 37(2), BSR20160503. doi: 10.1042/BSR20160503.

Goodman, S. B., Pajarinen, J., Yao, Z. et al. (2019). In-flammation and Bone Repair: From Particle Disease to Tissue Regeneration. Front. Bioeng. Biotechno, 7, 230. doi: 10.3389/fbioe.2019.00230.

Higgs, J., Derbyshire, E., & Styles, K. (2017). Nutrition and osteoporosis prevention for the orthopaedic surgeon. EFORT Open Reviews, 2(6), 300–308. doi: 10.1302/2058-5241.2.160079.

Ho-Shui-Ling, A., Bolander, J., Rustom, L. E. et al. (2018). Bone regeneration strategies: engineered scaffolds, bi-oactive molecules and stem cells Current stage and future perspectives. Biomaterials, 180, 143–162. doi: 10.1016/j.biomaterials.2018.07.017.

Kazemi, D., Shams Asenjan, K., Dehdilani, N., & Parsa H. (2017). Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin. Bone Joint Res, 6(2), 98–107. doi: 10.1302/2046-3758.62.bJr-2016-0188.r1.

Kornsuthisopon, C., Pirarat, N., Osathanon, T. et al. (2020). Autologous platelet-rich fbrin stimulates ca-nine periodontal regeneration. Scientific reports, 10, 1850. doi: 10.1038/s41598-020-58732-x.

Maritato, K. C., Rovesti, G. L. (2020). Minimally Invasive Osteosynthesis Techniques for Humerus Fractures. Veterinary Clinics of North America: Small Animal Practice, 50(1), 123–134. doi: 10.1016/j.cvsm.2019.08.005.

Metineren, H., Dülgeroğlu, T. C., Metineren, M. H. et al. (2016). Effectiveness of platelet-rich fibrin on tendon healing: experimental study in a rat model. Int J Clin Exp Med, 9(7), 14260–14265.

Neiva, R. F., Gil, L.F., Tovar, N., Janal, M. N. et al. (2016). The Synergistic Effect of Leukocyte Platelet-Rich Fi-brin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs. Hindawi Publishing Corporation BioMed Research International, 2016, Article ID 9507342. doi: 10.1155/2016/9507342.

Öncü, E., Bayram, B., Kantarcı, A. et al. (2016). Posıtıve effect of platelet rich fibrin on osseointegration. Med Oral Patol Oral Cir Bucal, 21(5), 601–607. doi: 10.4317/medoral.21026.

Ortved, K. F. (2018). Regenerative Medicine and Rehabil-itation for Tendinous and Ligamentous Injuries in Sport Horses. Veterinary Clinics of North America: Equine Practice, 34(2), 359–373. doi: 10.1016/j.cveq.2018.04.012.

Pascale, M. R., De, Sommese, L., Casamassimi, A. et al. (2015). Platelet Derivatives in Regenerative Medicine: An Update. Transfusion Medicine Reviews, 29, 52–61. doi: 10.1016/j.tmrv.2014.11.001.

Peric, M., Dumic-Cule, I., Grcevi, D. et al. (2015). The rational use of animal models in the evaluation of novel bone regenerative therapies. Bone, 70, 73–86. doi: 10.1016/j.bone.2014.07.010.

Rublenko, M. V., Chemerovskyi, V. O., Vlasenko, V. M. Ulianchych, N. V. (2018). Otsinka osteointehratsi-inykh i osteoin-duktyvnykh vlastyvostei keramiky, lehovanoi kremniiem, za modelnykh perelomiv stehnovoi kistky u kroliv. Naukovyi visnyk veteryn-arnoi medytsyny, 2, 37–46 (in Ukrainian).

Rublenko, M. V., Dudka, V. B., & Semeniak, S. A. (2015). Morfo-renthenolohichna i biokhimichna kharakter-ystyky reparatyvnoho osteohenezu za zamishchennia kistkovykh defektiv Biominom-HT u tvaryn. Nau-kovyi visnyk veterynarnoi medytsyny, 1, 98–106 (in Ukrainian).

Saikrishna, D., & Yelamali, T. (2015). Role of Platelet Rich Fibrin and Platelet Rich Plasma in Wound Heal-ing of Extracted Third Molar Sockets: A Comparative Study. J. Maxillofac. Oral Surg, 14, 410–415.

Shevchenko, S. M. (2020). Dynamika hematolohichnykh pokaznykiv, makromorfolohichna i renthenolohichna kartyny reparatyvnoho osteohenezu v kroliv za vy-korystannia trombotsytarnykh kontsentrativ ta hi-droksyapatytnoi keramiky. Naukovyi visnyk vet-erynarnoi medytsyny, 1, 153–164. doi: 333245/2310-4902-2020-154-1-153-164 (in Ukrainian).

Shevchenko, S. N., & Rublenko, M. V. (2020). Histologi-cal characteristics of Platelet-Rich Fibrin clots ob-tained under various modes of blood centrifugation. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Vet-erinary sciences, 22(99), 84–93. doi: 10.32718/nvlvet9914.

Shevchenko, S., Rublenko, M., & Bonkovsky, O. (2019). Technologies for producing platelet masses for regen-erative medicine. Naukovyi vіsnyk veterinarnoi medycyny, 2, 105–117. doi: 10.33245/2310-4902-2019-152-2-105-117.

Sinan, A., Eesa, M. J., & Omar, R. A. (2017). Radiological study of the influence of platelet rich-plasma and low level laser therapy on healing of experimentally frac-tured proximal sesamoid bone in equine: Part Ι1. Journal of Entomology and Zoology Studies, 5(5), 737–741. URL: https://www.entomoljournal.com/archives/?year=2017&vol=5&issue=5&ArticleId=2396.

Thanoon, M. G., Eesa, M. J., & Alkenanny, E. R. (2019). Histopathological evaluation of the platelets rich fi-brin and bone marrow on healing of experimental in-duced distal radial fracture in local dogs. The Iraqi Journal of Veterinary Medicine, 43(1), 11–20.

Todosiuk, T. P. (2020). Rentheno- ta makromorfolo-hichna otsinka reparatyvnoho osteohenezu za im-plantatsii hidroksyapatytnoho kompozytu, le-hovanoho hermaniiem. Naukovyi visnyk veterynar-noi medytsyny, 2, 183–194. doi: 10.33245/2310-4902-2020-160-2-183-194 (in Ukrainian).

Vatnikov, Y. A., Erin, I. S., Suleimanov, S. M., Kulikov, E. V., et al. (2020). Effect of Autologous Plasma Treat-ment on the Cornea Regeneration with Keratocon-junctivitis Sicca in Dogs. J. Anim. Health Prod., 8(1), 1–7. doi: 10.17582/journal.jahp/2020/8.1.1.7.

Yang, Y., & Xiao, Y. (2020). Biomaterials Regulating Bone Hematoma for Osteogenesis. Adv. Healthcare Mater, 9(23), 2000726. doi: 10.1002/adhm.202000726.

Zhang, Y., Tangl, S., Huber, C. D. et al. (2012). Effects of Choukroun’s platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone min-eral in maxillary sinus augmentation: A histological and histomorphometric study Journal of Cranio-Maxillo-Facial Surgery, 40, 321–328. doi: 10.1016/j.jcms.2011.04.020

Abstract views: 23
PDF Downloads: 14
Published
2021-06-19
How to Cite
Shevchenko, S., Rublenko, M., Ulyanchich, N., & Klymenko, P. (2021). Histomorphological characteristics of bone replacement in rabbits with hydroxyapatite ceramics and Platelet-Rich Fibrin. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(102), 43-52. https://doi.org/10.32718/nvlvet10207

Most read articles by the same author(s)