Viruses in food products


Keywords: viruses, food products, contamination, detection methods

Abstract

Data on viral food contaminants that are actually or potentially capable of realizing the food route of infection are presented. The main sources of infection of food with viruses are named: human waste / faeces, contaminated food processing facilities, animals-carriers of zooanthroponotic infections. The groups of viruses transmitted through food are characterized: 1) gastroenteritis pathogens – Sapporo and Norwalk viruses from the family Caliciviridae; Rotavirus A from the family Reoviridae; Mammastroviruses 1, 6, 8 and 9 from the family Astroviridae; Human mastadenovirus F from the family Adenoviridae; Aichivirus A from the family Picornaviridae; 2) Hepatovirus A from the family Picornaviridae and Orthohepevirus A from the family Hepeviridae (with replication in the liver); 3) viruses with replication in the human intestine, which after generalization of the infection affect the CNS – Еnteroviruses B and C from the family Picornaviridae. The stability and survival time of viruses in the environment and food are shown. The main ways of transmission of viruses that are able to enter the human body through infected foods are considered. Influenza A (H1N1) virus has been identified as a possible contaminant in pork and chicken, which without heat treatment can pose a potential risk of human infection. The ability of classical and African swine fever pathogens to remain viable after industrial processing of meat or raw meat has been shown. Families of viruses whose zoopathogenic representatives can contaminate meat products (beef, pork, chicken) are named: Parvoviridae, Anelloviridae, Circoviridae, Polyomaviridae, Smacoviridae. To determine the possible latent infection of people with these viruses, it is necessary to test sera for the presence of specific antibodies. The detection of gyroviruses of the family Anelloviridae and huchismacoviruses of the family Smacoviridae in human faeces may be due to the consumption of infected chicken meat. Data on extraction and concentration methods and methods of virus detection in contaminated food products: PCR (reverse transcription and real-time), ELISA, IСA, electron microscopy, virus isolation in transplanted cell cultures with subsequent identification in serological reactions, NR, IFА, ELISA) or PCR.

Downloads

Download data is not yet available.

References

Cibulski, S., de Lima, D. A., Santos, H. F. D., Teixeira, T. F., Tochetto, C., Mayer, F. Q., & Roehe, P. M. (2021). A plate of viruses: Viral metagenomics of supermar-ket chicken, pork and beef from Brazil. Virology, 552, 1–9. doi: 10.1016/j.virol.2020.09.005.

Doan, S. I., & Malysh, N. H. (2015). Hostri kyshkovi infektsii virusnoi etiolohii: epidemiolohichni aspekty. Ukrainskyi medychnyi chasopys, 3(107), 32–36. URL: https://www.umj.com.ua/article/87141/gostrikishkovi-infekcii-virusnoi-etiologii-epidemiologichniaspekti (in Ukrainian).

Efimochkina, N. R. (2017). Virusnye kontaminanty pish-hevyh produktov i metody ih obnaruzhenija. Gigiena I sanitarija, 96(6), 576–584. doi: 10.18821/0016-9900-2017-96-6-576-584.

Feagins, A. R., Opriessnig, T., Guenette, D. K., Halbur, P. G., Meng, X.-J. (2007). Detection and characterization of infectious Hepatitis E virus from commercial pig livers sold in local grocery stores in the USA. J. Gen. Virol., 88 (Pt. 3), 912–917. doi: 10.1099/vir.0.82613-0.

Gaythorpe, K. A. M., Trotter, C. L., Lopman, B., Steele, M., & Conlan, A. J. K. (2018). Norovirus transmission dynamics: a modelling review. Epidemiol Infect., 146(2), 147–158. doi: 10.1017/S0950268817002692.

Gerba, C. P., & Rodrigues, R. A. (2010). Adenoviruses. In: Dongyou L., ed. Molecular Detection of Foodborne Pathogen. USA: CRC Press, Taylor & Francis Group, 2010, 23–32.

Haidei, O. S., Shuliak, S. V., & Mezhenskyi, A. O. (2021). Monitorynh norovirusu v ustrytsiakh ta yistivnykh moliuskakh v Ukraini za period 2019–2020 rr. The XIII International Science Conference “Development of modern sci-ence: theory, methodology, practice”, March 18–19, 2021, Madrid, Spain. R., 214–216. doi: 10.46299/ISG.2021.I.XIII (in Ukrainian).

Hideyuki, Т. et al. (2012). A 549 and PLC/PRF/5 cells can support the efficient propagation of swine and wild boar hepatitis E virus (HEV) strains: demonstration of HEV infectivity of porcine liver sold as food. Archives of Virology, 157(2), 235–246. doi: 10.1007/s00705-011-1153-2.

Jiang, Y., Fang, L., Shi, X., et al. (2014). Simultaneous Detection of Five Enteric Viruses Associated with Gastroenteritis by Use of a PCR Assay: a Single Real-Time Multiplex Reaction and Its Clinical Application. J Clin Microbiol., 52(4), 1266–1268. doi: 10.1128/JCM.00245-14.

Kamar, N., Dalton, H. R., Abravanel, F., & Izopet, J. (2014). Hepatitis E virus infection. Clin. Microbiol. Rev., 27(1), 116–138. doi: 10.1128/CMR.00057-13.

Kodeks Alimentarius (2012). Rukovodstvo po primeneni-ju obshhih principov pishhevoj gigieny v bor'be s nali-chiem virusov v produktah pitanija. CAC/GL 79-2012, 17 (in Russian).

Krupovic, М., Varsani, A., Kazlauskas, D. et al. (2020). Cressdnaviricota: a virus phylum unifying 7 families of Rep-encoding viruses with single-stranded, circular DNA genomes. J. Virol. 94(12), e00582-20. doi: 10.1128/jvi.00582-20.

Liu, Y., Xu, Z.-q., Zhang, Q. et al. (2012). Simultaneous Detection of Seven Enteric Viruses Associated with Acute Gastroenteritis by a Multiplexed Luminex-Based Assay. J Clin Microbiol, 50(7), 2384–2389. doi: 10.1128/JCM.06790-11.

L'vov, D. K. (2013). Virusnye infekcii zheludochnok-ishechnogo trakta. Rukovodstvo po virusologii : Vi-rusy i virusnye infekcii cheloveka i zhivotnyh. Pod red. akademika RAN D. K. L'vova. Moskva: OOO “Izd-vo “Medicinskoe informacionnoe agentstvo”, 500–530 (in Russian).

Matthews, J. E., Dickey, B. W., Miller, R. D. et al. (2012). The epidemiology of published norovirus outbreaks: a systematic review of risk factors associated with attack rate and genogroup. Epidemiol Infect., 140(7), 1161–1172. doi: 10.1017/S0950268812000234.

Meleg, E., & Jakab, F. (2010). Asrtoviruses. In: Dongyou L., ed. Molecular Detection of Foodborne Pathogens. USA: CRC Press, Taylor & Francis Group, 33–48.

Morse, S. S., Mazet, J. A. K., Woolhouse, M. et al. (2012). Prediction and prevention of the next pandemic zoonosis. Lancet, 380, 1956–1965. doi: 10.1016/S0140-6736(12)61684-5.

Ramos, N., Mirazo, S., & Botto, G. (2018). High frequency and extensive genetic heterogeneity of TTSuV1 and TTSuVk2a in PCV2- infected and non-infected domestic pigs and wild boars from Uruguay. Vet. Microbiol., 224, 78–87. doi: 10.1016/j.vetmic.2018.08.029.

Rodríguez-Lázaro, D., Cook, N., Ruggeri, F. M. et al. (2012). Virus hazards from food, water and other con-taminated environments. FEMS Microbiology Re-views, 34(4), 786–814. doi: 10.1111/j.1574-6976.2011.00306.x.

Skrotska, O. I., Voloshyna, I. M., & Kisteniuk, T. S. (2014). Virusy u produktakh kharchuvannia. Khar-chova promyslo-vist, 16, 56–60. URL: http://dspace.nuft.edu.ua/jspui/handle/123456789/24171 (in Russian).

Skybitskyi, V. H., Kalinina, O. S., & Kozlovska, H. V. (2020). Rozdil 4. Metodolohiia sanitarnovirusolohichnoho dos-lidzhennia obiektiv dovkillia I kharchovykh produktiv. Veterynarno-sanitarna virusolohiia: pidruchnyk. Kherson: OLDI-PLIuS, 234–266 (in Russian).

Spahr, С., Knauf-Witzens, T., Vahlenkamp, T., Ulrich, R. G., & Johne, R. (2018). Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health, 65(1), 11–29. doi: 10.1111/zph.12405.

Teixeira, T. F., Dezen, D., Cibulski, S. P. et al. (2013). Torque teno sus virus (TTSuV) in tissues of pigs and its relation with the occurrence of postweaning multi-systemic wasting syndrome. Virus Gene., 47, 276–281. doi: 10.1007/s11262-013-0940-0.

Tomoichiro, O., Wang, Q., Katayama, K., Saif, L. J. (2020). Compre-hensive Review of Human Sapoviruses. Clin Microbiol Rev, 28(1), 32–53. doi: 10.1128/CMR.00011-14.

Trykhlib, V. I. (2018). Spalakhy hostrykh kyshkovykh infektsii virusnoi etiolohii v krainakh svitu (chastyna I). Ak-tualnaâ Infektologiâ. 6(5), 217–226. doi: 10.22141/2312-413x.6.5.2018.146769 (in Ukrainian).

Varsani, A., & Krupovic, M. (2018). Smacoviridae: a new family of animal-associated single-stranded DNA vi-ruses. Arch. Virol., 163, 2005–2015. doi: 10.1007/s00705-018-3820-z.

Verhoef, L., Gutierrez, G. J., Koopmans, M., & Boxman, I. (2013). Reported behavior, knowledge and aware-ness toward the potential for norovirus transmission by food handlers in Dutch catering companies and in-stitutional settings in relation to the prevalence of no-rovirus. Food Control, 34(2), 420–427. doi: 10.1016/j.foodcont.2013.05.015.

Villabruna, N., Koopmans, M. P. G., & de Graaf, M. (2019). Animals as reservoir for human norovirus. Vi-ruses, 11(5), 478. doi: 10.3390/v11050478.

Voloshina, I. N., & Skrockaja, O. I. (2014). Pishhevye produkty, kak istochnik virusnyh infekcij. Zhivye i bi-oko-snye sistemy, 9. URL: https://jbks.ru/archive/issue-9/article-13 (in Russian).

Zhang, W. L., Li, L., Deng, X., Kapusinszky, B., & Delwart, E. (2014). What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology, 468–470, 303–310. doi: 10.1016/j.virol.2014.08.025.

Abstract views: 46
PDF Downloads: 22
Published
2021-11-27
How to Cite
Kalinina, O. (2021). Viruses in food products. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(103), 15-20. https://doi.org/10.32718/nvlvet10303