Metabolic disorders in poultry (review)

Keywords: broiler chickens, laying hens, Zinc, Manganese, Vitamin A, Vitamin D.


The rapid growth of demand for poultry products requires its sufficient production by specialized farms of various forms of ownership. However, such production needs are not always adequate to the selection approach, the incubation component, the basic requirements of veterinary and sanitary and zoohygienic support, breed and age characteristics of keeping and raising poultry. Therefore, one of the crucial components of obtaining biologically complete, high-quality and fast-paying products of the poultry industry, including all stages of its production, is human support of the main links of ontogenesis (development after birth) of the bird. The issue of not only the creation of the genetic potential of the parent bird of different species and areas of productivity, but also the provision of veterinary and sanitary conditions for their maintenance, breeding and breeding remains relevant. However, the current economic conditions have forced the heads of enterprises and veterinary departments to some extent bypass the planned laboratory tests of feed, water and blood, which, although not complete, but informative enough to trace the main periods of growth and development of the bird. Slight deterioration of the mode and quality of feeding, changes in the parameters of the microclimate are reflected in changes in blood parameters. And what about the spoilage of feed, water, violation of veterinary and sanitary maintenance of poultry: the lack of preventive treatments with vitamin-mineral, hepatoprotective and enzyme preparations, pre- and probiotics. Which can lead to metabolic disorders in poultry. Which can occur due to disorders of protein, lipid, carbohydrate, vitamin, macro- and micromineral metabolism. As a result, there are significantly popular diseases such as: uric acid diathesis, cannibalism, osteoporosis and osteomalacia, perosis, rickets, obesity, E-hypovitaminosis. Further reducing productivity, which leads to large economic losses on farms.


Download data is not yet available.


Abou-Elela, A. (2017). Epidemiology, pathophysiology, and management of uric acid urolithiasis: A narrative review’. Journal of Advanced Research, 8(5), 513–527. doi: 10.1016/j.jare.2017.04.005.

Abudabos, A. M., Suliman, G. M., Hussien, E. O., Al-Ghadi, M. Q., & Al-Oweymer, A. (2013). Effect of Mineral-vitamin Premix Reduction on Performance and Certain Hemato-biochemical Values in Broiler Chickens. Asian Journal of Animal and Veterinary Advances, 8(5), 747–753. doi: 10.3923/ajava.2013.747.753.

Aengwanich, W. (2008). Pathological Changes and the Effects of Ascorbic Acid on Lesion Scores of Bursa of Fabricius in Broilers Under Chronic Heat Stress. Research Journal of Veterinary Sciences, 62–66. doi: 10.3923/rjvs.2008.62.66.

Akbaş, Y., Yalçın, S., Özkan, S., Kırkpınar, F., Takma, Ç., Gevrekçi, Y., Güler, H. C., & Türkmut, L. (2009). Heritability estimates of tibial dyschondroplasia, valgus-varus, foot-pad dermatitis and hock burn in broiler. Archiv fur Geflugelkunde, 73(1), 1–6.

Alloui, N., & Bouzouaia, M. (2015). Manual of poultry diseases. Proliferative stomatitis Ulcerative stomatitis Esophagus & Crop.

Angani, M. (2017). Ascorbic Acid Supplementation Effect on Haematology and Oxidative Stress Parameters of Broiler Chicken during the Hot-Dry Season in Southern Guinea Savannah. Journal of Poultry Research, 14(1), 28–33. URL: 26c4c0c94a622248786b3e8c0b7ee525756f2937.

Bar, A., Shinder, D., Yosefi, S., Vax, E., & Plavnik, I. (2003). Metabolism and requirements for calcium and phosphorus in the fast-growing chicken as affected by age. British Journal of Nutrition, 89(1), 51–60. doi: 10.1079/bjn2002757.

Berger, M. M., & Shenkin, A. (2006). Vitamins and trace elements: Practical aspects of supplementation. Nutrition, 22(9), 952–955. doi: 10.1016/j.nut.2006.06.004.

Bozakova, N. A., Stoyanchev, K. T., Popova-Ralcheva, S., Georgieva, N. V., Gerzilov, V. T., & Valkova, E. B. (2012). Behavioral study of mule ducks with subclinical muscular dystrophy under ecological comfort and stress conditions. Bulgarian Journal of Agricultural Science, 18(4), 511–518. URL:

Bradshaw, R. H., Kirkden, R. D., & Broom, D. M. (2002). A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian and Poultry Biology Reviews, 13(2), 45–103. doi: 10.3184/147020602783698421.

Burgos, S., Bohorquez, D., & Burgos, S. (2006). Vitamin Deficiency-Induced Neurological Diseases of Poultry. International Journal of Poultry Science, 9(5), 804–807. doi: 10.3923/ijps.2006.804.807.

Cai, Z., Finnie, J. W., & Blumbergs, P. C. (2006). Avian riboflavin deficiency: An acquired tomaculous neuropathy. Veterinary Pathology, 43(5), 780–781. doi: 10.1354/vp.43-5-780.

Çevİk, A. (2018). Broiler Piliçlerde A Vitamin Yokluğunda Patolojik Bulgular Materyal ve Metot. Harran Üniv Vet Fak Derg, 7(2), 219–221. URL:

Chand, N., Naz, S., Khan, A., Khan, S., & Khan, R. U. (2014). Performance traits and immune response of broiler chicks treated with zinc and ascorbic acid supplementation during cyclic heat stress. International Journal of Biometeorology, 58(10), 2153–2157. doi: 10.1007/s00484-014-0815-7.

Chen, C. Y., Lin, H. Y., Chen, Y. W., Ko, Y. J., Liu, Y. J., Chen, Y. H., Walzem, R. L., & Chen, S. E. (2017). Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy. Poultry science, 96(7), 2428–2437. doi: 10.3382/ps/pex015.

Clarke, I. (2008). Models of “Obesity” in Large Animals and Birds. Frontiers of Hormone Research, 36, 107–117. doi: 10.1159/000115359.

Conde-Aguilera, J. A. Cobo-Ortega, C., Tesseraud, S., Lessire, M., Mercier, Y., & van Milgen, J. (2013). Changes in body composition in broilers by a sulfur amino acid deficiency during growth. Poultry Science, 92(5), 1266–1275. doi: 10.3382/ps.2012-02796.

Cortes, P. L., Tiwary, A. K., Puschner, B., Crespo, R. M., Chin, R. P., Bland, M., & Shivaprasad, H. L. (2006). Vitamin A deficiency in turkey poults. Journal of Veterinary Diagnostic Investigation, 18(5), 489–494. doi: 10.1177/104063870601800514.

Dalia, A. M., Loh, T. C., Sazili, A. Q., Jahromi, M. F., & Samsudin, A. A. (2018). Effects of vitamin E, inorganic selenium, bacterial organic selenium, and their combinations on immunity response in broiler chickens. BMC Veterinary Research, 14(1), 249. doi: 10.1186/s12917-018-1578-x.

Dalloul, R. A., Lillehoj, H. S., Shellem, T. A., & Doerr, J. A. (2002). Effect of vitamin A deficiency on host intestinal immune response to Eimeria acervulina in broiler chickens. Poultry Science, 81(10), 1509–1515. doi: 10.1093/ps/81.10.1509.

Dinev, I. (2011). Comparative pathomorphological study of rickets types in broiler chickens. Iranian Journal of Veterinary Science and Technology, 3(1), 1–10. URL:

Dinev, I. (2012a). Clinical and morphological investigations on the incidence of forms of rickets and their association with other pathological states in broiler chickens. Research in Veterinary Science, 92(2), 273–277. doi: 10.1016/j.rvsc.2011.02.011.

Dinev, I. (2012). Leg Weakness Pathology in Broiler Chickens. The Journal of Poultry Science, 49(2), 63–67. doi: 10.2141/jpsa.011109.

Dinev, I. (2012b). Rickets: prevalence of its forms and association with other pathological conditions in broiler chickens. World’s Poultry Science Journal, 68(2), 239–243. doi: 10.1017/S0043933912000293.

Drinić, M., Kralj, A., & Važić, B. (2016). Effects of removing vitamins and trace minerals from finisher diets on production parameters, tibia strength and ash content in chicken bones. Animal Science Papers and Reports, 34(3), 279–292.

Edwards, H. M. (2000). Nutrition and Skeletal Problems in Poultry. Poultry Science, 79(7), 1018–1023. doi: 10.1093/ps/79.7.1018.

Fan, X. Liu, S., Liu, G., Zhao, J., Jiao, H., Wang, X., Song, Z., & Lin, H. (2015). Vitamin A deficiency impairs mucin expression and suppresses the mucosal immune function of the respiratory tract in chicks. PLoS ONE, 10(9), 1–16. doi: 10.1371/journal.pone.0139131.

Farina, G., de Mello Kessler, A., Ebling, P. D., Marx, F. R., César, R., & Ribeiro, A. M. L. (2017). Performance of broilers fed different dietary choline sources and levels. Ciência Animal Brasileira, 18, 1–14. doi: 10.1590/1089-6891v18e-37633.

Fleming, R. H., McCormack, H. A., McTeir, L., & Whitehead, C. C. (2006). Relationships between genetic, environmental and nutritional factors influencing osteoporosis in laying hens. British Poultry Science, 47(6), 742–755. doi: 10.1080/00071660601077949.

Fouad, A. M., El-Senousey, H. K., Yang, X. J., & Yao, J. H. (2012). Role of dietary L-arginine in poultry production. International Journal of Poultry Science, 11(11), 718–729. doi: 10.3923/ijps.2012.718.729.

Greenacre, C. B. (2015). Backyard Poultry Medicine and Surgery. Edited by C. B. Greenacre and T. Y. Morishita. Hoboken, NJ, USA: John Wiley & Sons, Inc. doi: 10.1002/9781118911075.

Hada, F., Malheiros, R. D., Silva, J. D. T., Marques, R. H., Gravena, R. A., Silva, V. K., Moraes, V. M. B. (2013). Effect of Protein, Carbohydrate, Lipid, and Selenium Levels on the Performance, Carcass Yield, and Blood Changes in Broilers. Brazilian Journal of Poultry Science, 15(4), 385–394.

Halle, I., & Ebrahem, M. (2012). Influence of Vitamin B 12 and Cobalt on performance of laying hens. vTI Agriculture and Forestry Research, 3(62), 111–116. URL:

Hocking, P. M., Stevenson, E., & Beard, P. M. (2013). Supplementary biotin decreases tibial bone weight, density and strength in riboflavin-deficient starter diets for turkey poults. British Poultry Science, 54(6), 801–809. doi: 10.1080/00071668.2013.860213.

Karthikeyan, K., & Thappa, D. M. (2002). Pellagra and skin. International Journal of Dermatology, 41(8), 476–481. doi: 10.1046/j.1365-4362.2002.01551.x.

Kato, R., Bertechini, A. G., Fassani, E. J., Santos, C. D., Dionizio, M. A., & Fialho, E. T. (2003). Cobalt and vitamin B 12 in diets for commercial laying. Brazilian Journal of Poultry Science, 5(1), 45–50. URL:

Kras, R. V., Kessler, A. de M., Ribeiro, A. M. L., Henn, J. D., Bockor, L., & Sbrissia, A. F. (2013). Effect of Dietary Fiber, Genetic Strain and Age on the Digestive Metabolism of Broiler Chickens. Brazilian Journal of Poultry Science, 15(2), 83–90. URL:

Kumar, S., & Babu, B. V. (2009). Process intensification of nicotinic acid production via enzymatic conversion using Reactive extraction. Chemical and Biochemical Engineering Quarterly, 23(3), 367–376. URL:

Lambton, S. L., Knowles, T. G., Yorke, C., & Nicol, C. J. (2015). The risk factors affecting the development of vent pecking and cannibalism in free-range and organic laying hens. Animal Welfare, 24(1), 101–111. doi: 10.7120/09627286.24.1.101.

Larrieta, E., de la Vega-Monroy, M. L. L., Vital, P., Aguilera, A., German, M. S., El Hafidi, M., & Fernandez-Mejia, C. (2012). Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. Journal of Nutritional Biochemistry, 23(4), 392–399. doi: 10.1016/j.jnutbio.2011.01.003.

Li, X., Zhang, D., & Bryden, W. L. (2017). Calcium and phosphorus metabolism and nutrition of poultry: Are current diets formulated in excess? Animal Production Science, 57(11), 2304–2310. doi: 10.1071/AN17389.

Lin, C. Y., Friars, G. W., & Moran, E. T. (1980). Genetic and Environmental Aspects of Obesity in Broilers’. World’s Poultry Science Journal, 36(2), 103–111. doi: 10.1079/WPS19800005.

Lin, Y. F., Tsai, H.-L., Lee, Y.-C., & Chang, S.-J. (2005). Maternal vitamin E supplementation affects the antioxidant capability and oxidative status of hatching chicks. Journal of Nutrition, 135(10), 2457–2461. doi: 10.1093/jn/135.10.2457.

Liu, L. et al. (2015). Effect of immune stress on growth performance and energy metabolism in broiler chickens. Food and Agricultural Immunology, 26(2), 194–203. doi: 10.1080/09540105.2014.882884.

Manohar, G., & Kanagaraju, P. (2015). Non-Infectious Form of Leg Weakness in Commercial Broilers – An Overview. International Journal of Science, Environment and Technology, 4(6), 1674–1677. URL:

Mattila, P. H., Valkonen, E., & Valaja, J. (2011). Effect of Different Vitamin D Supplementations in Poultry Feed on Vitamin D Content of Eggs and Chicken Meat. Journal of Agricultural and Food Chemistry, 59(15), 8298–8303. doi: 10.1021/jf2012634.

Mayne, R. K. (2005). A review of the aetiology and possible causative factors of foot pad dermatitis in growing turkeys and broilers. World’s Poultry Science Journal, 61(2), 256–267. doi: 10.1079/WPS200458.

Mohiti-Asli, M., Shivazad M., Zaghari M., Aminzadeh S., Rezaian M., & Mateos G. G. (2012). Dietary fibers and crude protein content alleviate hepatic fat deposition and obesity in broiler breeder hens. Poultry Science, 91(12), 3107–3114. doi: 10.3382/ps.2011-02040.

Moyle, J. R., Wideman, R. F., Whipple, S. M., Yoho, D. E., & Bramwell, R. K. (2011). Urolithiasis in male boiler breeders. International Journal of Poultry Science, 10(11), 839–841. doi: 10.3923/ijps.2011.839.841.

Nawab, A. et al. (2018). Vitamin E and Fertility in the Poultry Birds; Deficiency of Vitamin E and its Hazardous Effects. Appro Poult Dairy & Vet Sci, 5, 2–7. doi: 10.31031/APDV.2018.05.000617.

Nischemenko, M. et al. (2019). The indexes of mineral exchange in laying hens under the influence of Selenium and Zinc nonoacquahelates and vitamin E. Naukovyi visnyk veterinarnoi medycyny, (1(149)), 49–56. doi: 10.33245/2310-4902-2019-149-1-49-56.

Ognik, K., Kozłowski, K., Stępniowska, A., Szlązak, R., Tutaj, K., Zduńczyk, Z., & Jankowski, J. (2019). The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in Turkey tissues. Animal, 13(6), 1137–1144. doi: 10.1017/S1751731118002653.

Oviedo-Rondón, E. O., Ferket, P. R., & Havestein, G. B. (2006). Nutritional factors that affect leg problems in broilers and turkeys. Avian and Poultry Biology Reviews, 17(3), 89–103. doi: 10.3184/147020606783437921.

Parolini, M., Romano, M., Caprioli, M., Rubolini, D., & Saino, N. (2015). Vitamin E deficiency in last-laid eggs limits growth of yellow-legged gull chicks. Functional Ecology, 29(8), 1070–1077. doi: 10.1111/1365-2435.12412.

Priyanka, Sharma, S., Chaudhary, R. N., Niwas R., Arora, N., & Yadav, P. (2018). Surgical Correction of Perosis/Slipped Tendon in a White Pekin Duck- Case Report. International Journal of Current Microbiology and Applied Sciences, 7(12), 389–392. doi: 10.20546/ijcmas.2018.712.048.

Pelicia, K., Garcia, E. A., Faitarone, A. B. G., Silva, A. P., Berto, D. A., Molino, A. B., & Vercese, F. (2009). Calcium and available phosphorus levels for laying hens in second production cycle. Revista Brasileira de Ciencia Avicola, 11(1), 39–49. doi: 10.1590/S1516-635X2009000100007.

Peters, B. S. E., & Martini, L. A. (2010). Nutritional aspects of the prevention and treatment of osteoporosis. Arquivos Brasileiros de Endocrinologia & Metabologia, 54(2), 179–185. doi: 10.1590/s0004-27302010000200014.

Pineda, L. et al. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Archives of Animal Nutrition, 66(5), 416–429. doi: 10.1080/1745039X.2012.710081.

Poureslami, R., Turchini, G. M., Raes, K., Huyghebaert, G., De Smet, S. (2010). Effect of diet, sex and age on fatty acid metabolism in broiler chickens: SFA and MUFA. British Journal of Nutrition, 104(2), 204–213. doi: 10.1017/S0007114510000541.

Proszkowiec-Weglarz, M., & Angel, R. (2013). Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. Journal of Applied Poultry Research, 22(3), 609–627. doi: 10.3382/japr.2012-00743.

Quarantelli, A., Bonomi, A. et al. (2003). The effects of different levels of dietary biotin on the performances and on bone growth in the broiler. Italian Journal of Animal Science, 2(1), 453–455. doi: 10.4081/ijas.2003.s1.453.

Rath, N. C. Huff, G. R., Huff, W. E., & Balog, J. M. (2000). Factors regulating bone maturity and strength in poultry. Poultry Science, 79(7), 1024–1032. doi: 10.1093/ps/79.7.1024.

Reznichenko, L. V., Jakovleva, I. N., Reznichenko, A. A., Denisova, N. A., Savushkina, N. G., Shevchenko, T. S., Shentseva, E. A., & Zherebnenko, S. V. (2017). Efficiency of carotine-chlorophyllic complexes use in a-hypovitaminosis of poultry. RESEARCH RESULT. Pharmacology and Clinical Pharmacology, 3(1). doi: 10.18413/2500-235X-2017-3-1-105-113.

Romanovych, L. V., Kurtyak, B. M., Romanovych, M. S., Vishchur, O. I., & Mudrak, D. I. (2018). Influence of vitamins E and C on the indices of pseudoeozinofiles fagocytosis in chickens broilers blood of cross ROSS-308. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 20(92), 169–171. doi: 10.32718/10.32718/nvlvet9235.

Sakara, V., Melnyk, A., & Markhenkov, F. (2019). State of protein and mineral exchange in broiler-chickens for the use of Zinc and Mangane chelates. Naukovyi visnyk veterynarnoi medytsyny, 1(149), 85–94. doi: 10.33245/2310-4902-2019-149-1-85-94.

Sakara, V. S., & Melnyk, A. Y. (2019). The influence of Zinc and Manganese chelates (pantothenates) on some chicken broiler metabolism indicators. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 21(96), 134–140. doi: 10.32718/nvlvet9624.

Salami, S. A., Oluwatosin, O. O., Oso, A. O. et al. (2016). Bioavailability of Cu, Zn and Mn from Mineral Chelates or Blends of Inorganic Salts in Growing Turkeys Fed with Supplemental Riboflavin and/or Pyridoxine. Biological Trace Element Research, 173(1), 168–176. doi: 10.1007/s12011-016-0618-2.

Selvam, R., Saravanakumar, M., Suresh, S., Chandrasekeran, C. V., & Prashanth, D. S. (2018). Evaluation of polyherbal formulation and synthetic choline chloride on choline deficiency model in broilers: implications on zootechnical parameters, serum biochemistry and liver histopathology. Asian-Australasian Journal of Animal Sciences, 31(11), 1795–1806. doi: 10.5713/ajas.18.0018.

Sifri, M. (1995). Nutrient Requirements of Poultry, Poultry Science. doi: 10.3382/ps.0740224.

Sparke, A. J., Sims, T. J., Avery, N. C., Bailey, A. J., Fleming, R. H., & Whitehead, C. C. (2002). Differences in composition of avian bone collagen following genetic selection for resistance to osteoporosis. British Poultry Science, 43(1), 127–134. doi: 10.1080/00071660120109962.

Swennen, Q., Decuypere, E., & Buyse, J. (2007). Implications of dietary macronutrients for growth and metabolism in broiler chickens. World’s Poultry Science Journal, 63(4), 541–556. doi: 10.1017/S0043933907001602.

Świątkiewicz, S., Arczewska-Włosek A., Bederska-Lojewska D., & Józefiak D. (2017). Efficacy of dietary vitamin D and its metabolites in poultry - review and implications of the recent studies. World’s Poultry Science Journal, 73(01), 57–68. doi: 10.1017/S0043933916001057.

Tuleun, C., Njoku, P. C., & Okwori, A. I. (2010). Effect of dietary ascorbic acid on performance of broiler chickens exposed to different lighting regime. International Journal of Poultry Science, 9(2), 118–125. doi: 10.3923/ijps.2010.118.125.

Waldenstedt, L. (2006). Nutritional factors of importance for optimal leg health in broilers: A review. Animal Feed Science and Technology, 126(3–4), 291–307. doi: 10.1016/j.anifeedsci.2005.08.008.

Wang, B., Zhang, X., Yue, B., Ge, W., Zhang, M., Ma, C., & Kong, M. (2016). Effects of pantothenic acid on growth performance, slaughter performance, lipid metabolism, and antioxidant function of Wulong geese aged one to four weeks. Animal Nutrition, 2(4), 312–317. doi: 10.1016/j.aninu.2016.07.005.

Whitehead, C. C., & Fleming, R. H. (2000). Osteoporosis in cage layers. Poultry Science, 79(7), 1033–1041. doi: 10.1093/ps/79.7.1033.

Levchenko, V. І. et al. (2016). Vplyv preparatu mehavit na a-vitaminnyi i kaltsiie-fosfornyi obmin u silskohospodarskykh tvaryn. Naukovyi vіsnyk veterinarnoi medycyny, 1, 49–56 (in Ukrainian).

Mel'nik, A. Ju. (2011). Diahnostyka ta profilaktyka vitaminno-mineralnoi nedostatnosti v kurei-nesuchok. Naukovyi visnyk Lvivskoho natsionalnoho universytetu veterynarnoi medytsyny ta biotekhnolohii im. S. Z. Gzhytskoho, 4(50), 284–292. URL: (in Ukrainian).

Abstract views: 53
PDF Downloads: 24
How to Cite
Melnyk, A., Sakara, V., Vovkotrub, N., Kharchenko, A., & Bilyk, B. (2021). Metabolic disorders in poultry (review). Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(103), 125-135.