Evaluation of disinfectant “Enzidez” according to physical and chemical parameters

Keywords: Enzidez, proteolytic activity, washing ability, corrosion action


The dependence of the national economy on disinfectants is constantly growing through prevention strategies and the development of resistance in microorganisms. Therefore, new disinfectants with different mechanisms of biocidal activity for a wide range of pathogens are appearing on the market. The aim of work has been to determine the physical and chemical parameters of the created disinfectant “Enzidez” active on biofilm forms of bacteria and the possible organic load. The magnitude of the surface tension of disinfectant “Enzidez” at different concentrations of solutions has been determined using a device with a Traube stalagmometer. The wettability of solutions has been determined by the method of measuring the wetting angle with a catheter. Washing properties and stability of foam by the method of washing animal fats, followed by application of indicator liquid. Proteolytic activity has been determined using milk and the effect of Enzidez solutions of different concentrations on it, followed by measurement of the optical density of the solutions spectrophotometrically at a wavelength of 600 nm. It is established that the disinfectant with enzymes – “Enzidez” for disinfection in veterinary clinics for pre-sterilization disinfection and treatment of products and instruments of surgical purpose (plastic, rubber, glass, stainless steel) and objects of veterinary supervision (tables, utensils, walls, floors, doors, windows, etc.) with organic load is well soluble in water and has a pH of 0.25–1.0 % solutions in the range of 8.2–8.0 units. At a solution temperature of +20 ± 1 °С it has had a surface tension not higher than 37.63 ± 0.50 mN/m and a wetting angle of 69.5 ± 0.7 degree. The disinfectant has provided an excellent detergent effect only at solutions with a concentration of 1.0 % and above. When assessing the corrosive action of Enzidez in the concentration of solutions from 0.25 to 1.0 %, the amount of corrosion on stainless steel has been hundreds of times lower than the allowable regulatory limit. The impact on galvanized steel is slightly higher than that of stainless steel, but also several tens below the norm. A study to determine the proteolytic activity of the disinfectant “Enzidez” on milk proteins has revealed that the disinfectant broke down proteins at a concentration of solutions 0.5–1.0 % at a temperature of + 20 °C at 41.3–43.1 %, respectively, for 15 min of exposure. However, increasing the temperature of solutions to +60 °C and exposure for 30 min has provided an increase in proteolytic activity up to 70 %. Thus, disinfectant “Enzidez” is a highly active disinfectant for disinfecting surfaces even in the case of organic contamination.


Download data is not yet available.


Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N E. (2014). Biofilm formation and persis-tence on abiotic surfaces in the context of food and medical environments. Archives Microbioljgy, 196(7), 453–472. DOI: 10.1007/s00203-014- 0983-1.

Berhilevych, O. М., Kasianchuk, V. V., Kukhtyn, M. D., Lotskin, I. М., Garkavenko, T. O., & Shubin P. A. (2017). Characteristics of antibiotic sensitivity of Staphylococcus aureus isolated from dairy farms in Ukraine. Regulatory Mechanisms in Biosystems, 8(4), 559–563. DOI: 10.15421/021786.

Chechet, O., Kovalenko, V., Haidei, O., & Krushelnytska, O. (2021). Research of safety and toxicity of drug “Biozapin”. Scientific Messenger of LNU of Veteri-nary Medicine and Biotechnologies. Series: Veterinary Sciences, 23(103), 157–161. DOI: 10.32718/nvlvet10322.

Cheshkova, A V. (2007). Fermentyi i tehnologii dlya tekstilya, moyuschih sredstv, kozhi, meha. Irkutsk: GOUVPO IGHTU (in Russian).

Du, Y., Lv, X.-T., Wu, Q. Y., Zhang, D.-Y., Zhou, Y.-T., Peng, L., & Hu, H.-Y. (2017). Formation and control of disinfection byproducts and toxicity during re-claimed water chlorination: A review. Journal of Envi-ronmental Sciences, 58, 51–63. DOI: 10.1016/j.jes.2017.01.013.

Hemati, S., Kouhsari, E., Sadeghifard, N., Maleki, A. Omidi, N., Mahdavi, Z., & Pakzad, I. (2020). Sub-minimum inhibitory concentrations of biocides in-duced biofilm formation in Pseudomonas aeruginosa. New Microbes and New Infections, 38, 100794. DOI: 10.1016/j.nmni.2020.100794.

Jin, M., Liu, L., Wang, D., Yang, D., Liu, W., & Li, J. (2020). Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME Journal, 14, 1847–1856. DOI: 10.1038/s41396-020-0656-9.

Kovalenko, V. L., Kovalenko, P. L., Ponomarenko, G. V., Kukhtyn, M. D., Midyk, S. V., Horiuk, Yu. V., & Garkavenko, V. M. (2018). Changes in lipid composi-tion of Escherichia coli and Staphylococcus areus cells under the influence of disinfectants Barez, Bio-chlor and Geocide. Ukrainian Journal of Ecology, 8(1), 547–550. DOI: 10.15421/2018_248.

Kovalenko, V. L., Chekhun, A. I., Yarokhno, Ya. M., Hnatenko, A. V., Pushchyk, Yu. I., & Savchenko, L. H. (2011). Vyznachennia bakterytsydnosti kom-pleksnoho dezinfikuiuchoho preparatu na osnovi poliheksametylenhuanidyn hidrokhloryda. Veteryn-arna biotekhnolohiia Biuleten, 18, 106‒110 (in Ukrainian).

Kozhyn, V., Kukhtyn, M., Horiuk, V., Vichko, O., & Kryzhanivsky, Y. (2021). The activity of the disin-fectant “Enzidez” against bacteria in biofilms. Scien-tific Messenger of Lviv National University of Veteri-nary Medicine and Biotechnologies. Series: Veterinary sciences, 23(101), 67–74. DOI: 10.32718/nvlvet10112.

Kukhtyn, M., Kozhyn, V., Horiuk, V., Malimon, Z., Hori-uk, Y., Yashchuk, T., & Kernychnyi, S. (2021). Activi-ty of disinfecting biocides and enzymes of proteases and amylases on bacteria in biofilms. Kafkas Univ Vet Fak Derg, 27(4), 495–502. DOI: 10.9775/kvfd.2021.25770.

Lineback, C. B., Nkemngong, C. A., & Wu, S. T. (2018). Hydrogen peroxide and sodium hypochlorite disin-fectants are more effective against Staphylococcus aureus and Pseudomonas aeruginosa biofilms than quaternary ammonium compounds. Antimicrobial Resistance and Infection Control, 7, 154. DOI: 10.1186/ s13756-018-0447-5.

Mitskyavichyus, E. K., & Bingyalene, I. B. (1984). Li-tovskiy filial vsesoyuznogo nauchno-issledovatelskogo instituta maslodelnoy i syirodelnoy promyishlennosti. Sposob opredeleniya proteolitich-eskoy aktivnosti moyuschih sredstv, soderzhaschih fermentyi. Patent SU No 1065742 A. 1984 Ver 1 (in Russian).

Palii, A. P., Kovalenko, V. L., Ponomarenko, G. V., Ku-khtyn, M. D., Paliy, A. P., Bodnar, O. O., Rebenko, H. I., Kozytska, T. G., Makarevich, T. V., & Ponomaren-ko, O. V. (2020). Evaluation of acute toxicity of the “Orgasept” disinfectant. Ukrainian Journal of Ecolo-gy, 10(4), 273–278. DOI: 10.15421/2020_199.

Perkii, Yu. B., Kryzhanivskyi, Ya. Y., Kryvokhyzha, Ye. M., Motkaliuk N. F., & Kukhtyn, M. D. (2012). Otsinka prydatnosti ta efektyvnosti myinykh, dezin-fikuiuchykh i myino-dezinfikuiuchykh zasobiv dlia sanitarnoi obrobky doilnoho ustatkuvannia ta mo-lochnoho inventaria. Metodychni rekomendatsii. Ter-nopil: TDS IVM (in Ukrainian).

Poppendieck, D., Hubbard, H., & Corsi, R. L. (2021). Hydrogen Peroxide Vapor as an Indoor Disinfectant: Removal to Indoor Materials and Associated Emis-sions of Organic Compounds. Environmental Science & Technology Letters, 8(4), 320–325. DOI: 10.1021/ acs.estlett.0c00948.

Salata, V., Kukhtyn, M., Pekriy, Yu., Horiuk, Yu., & Hori-uk, V. (2018). Activity of washing-disinfecting means “San-active” for sanitary treatment of equipment of meat processing enterprises in laboratory and manu-facturing conditions. Ukrainian journal of veterinary and agricultural sciences, 1(1), 10–16. DOI: 10.15421/ujvas1-1.02.

Salata, V. Z., Kukhtyn, M. D., & Perkii, Yu. B. (2016). Sposib vyznachennia myinykh vlastyvostei myinykh i myino-dezinfikuiuchykh zasobiv dlia sanitarnoi obrobky tekhnolohichnoho obladnannia u miasnii promyslovosti. Patent Ukainy No 112503. 2016 Ver 24 (in Ukrainian).

Salata, V. Z. (2015). Fizyko-khimichni vlastyvosti myino-dezinfikuiuchoho zasobu “San-aktyv” dlia sanitarnoi obrobky na pidpryiemstvakh miasnoi promyslovosti. Visnyk Zhytomyrskoho natsionalnoho ahroekolohichnoho universytetu “Veterynarna medytsyna”. Naukovo-teoretychnyi zbirnyk, 1(49), 272–277 (in Ukrainian).

Soltys, M. P., Rudyk, H. V., Gunchak, V. M., & Gutyi, B. V. (2019). Embryotoxic and teratogenic effects of Vi-tosept on white rats. Journal for Veterinary Medicine, Biotechnology and Biosafety, 5(4), 22–26. DOI: 10.36016/JVMBBS-2019-5-4-6.

Soltys, M., Gunchak, V., Rudyk, H., & Vasiv, R. (2020). Dynamics of morphological and biochemical parame-ters in the blood of white mice under the action of the drug “Vitosept”. Scientific Messenger of LNU of Vet-erinary Medicine and Biotechnologies. Series: Veteri-nary Sciences, 22(99), 167–172. DOI: 10.32718/nvlvet9925.

Shynkaruk, O. Yu., Kukhtyn, M. D., Vichko, O. I., Shved, O. V., & Marintsova, N. H. (2018). Kharakterystyka myinoho zasobu “enzymyi” za zdatnistiu ruinuvan-nia mikrobnykh bioplivok. Visnyk Natsionalnoho universytetu “Lviska politekhnika”. Seriia Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, 886, 158–162 (in Ukrainian).

Verkholyuk, M., Peleno, R., & Turko, I. (2020). Resistance of S. aureus Atcc 25923, E. coli 055k59 No. 3912/41 and P. aeruginosa 27/99 to the Wash-disinfectant “Milkodez”. EUREKA: Health Sci, 1, 55–60. DOI: 10.21303/2504-5679.2020.001100.

Abstract views: 0
PDF Downloads: 0
How to Cite
Kukhtyn, M., Kozhyn, V., Horiuk, V., Horiuk, Y., & Boltyk, N. (2022). Evaluation of disinfectant “Enzidez” according to physical and chemical parameters. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(105), 3-9. https://doi.org/10.32718/nvlvet10501