Development of methods for prevention of cryptosporidiosis of calves


Keywords: Cryptosporidium, oocysts, cessation of sporulation, weight gain,calves

Abstract

Cryptosporidiosis of calves, caused by the parasite Cryptosporidium parvum, is a dangerous disease for calves for up to one month. Sick animals suffer from debilitating diarrhea, intoxication, and dehydration, which can lead to death. Currently, effective preventive and curative measures have not been developed. Therefore, new strategies for preventing cryptosporidiosis in cattle are being sought. The study was conducted on the farm for raising young cattle in Holstein LTD agricultural firm “Lan” Sumy region in February 2021. The circulating microflora in the calf and the clinical condition of the animals were determined. The first experimental group of calves used the antimicrobial agent Trimeratinvet powder (water-soluble powder for oral administration). In the second experimental group, calves were fed the acidifier Kronocid L. As a control, healthy calves were used, which received a regular diet. Conducted a study of fecal masses of calves from birth to one month. The presence of Cryptosporidium spp. in fecal masses of calves was determined microscopically and by nested polymerase chain reaction. The count of microorganisms was performed after cultivation on elective media and determined the number of colony-forming units in CFU/cm3. The EXPERTISTM Rainbow diagnostic kit was used to diagnose Rotavirus and Coronavirus. Studies have shown that Cryptosporidium in calves under one month of age is the most common cause of diarrhea (42 %). Acidifier Kronocid L and Trimeratinvet inhibited the reproduction of cryptosporidia by stopping sporulation. Acidifier at a pH of 4.5 penetrated the oocyst's shell, causing cytoplasm compression. At 60 minutes of exposure, Kronocid L reduced the possibility of sporulation and destroyed 90 % of treated oocysts, which is 20 % more than the antimicrobial agent Trimeratinvet. In the experimental group using Trimeratinvet, the onset of chewing occurred later than eight days compared to the control group and with Kronocid L. Calves of the experimental groups had an average weight gain during the month with Trimeratinvet less by 20.8 % (P ≤ 0.05), with Kronocid L – by 14.3 % compared to healthy. Prospects for further research are to determine the effect of Cronocid L and other species of Cryptosporidium in adult cattle.

Downloads

Download data is not yet available.

References

Arshad, M. A., Hassan, F. U., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colo-nization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal nutri-tion (Zhongguo xu mu shou yi xue hui), 7(3), 883–895. DOI: 10.1016/j.aninu.2021.03.004.

Asadpour, M., Namazi, F., Razavi, S. M., & Nazifi, S. (2018). Comparative efficacy of curcumin and paromomycin against Cryptosporidium parvum infection in a BALB/c model. Veterinary parasitology, 250, 7–14. DOI: 10.1016/j.vetpar.2017.12.008.

Aschenbach, J. R., Zebeli, Q., Patra, A. K., Greco, G., Amasheh, S., & Penner, G. B. (2019) Symposium re-view: The importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci, 102(2), 1866–1882. DOI: 10.3168/jds.2018-15243.

Avendaño, C., Ramo, A., Vergara-Castiblanco, C., Sánchez-Acedo, C., & Quílez, J. (2018). Genetic uniqueness of Cryptosporidium parvum from dairy calves in Colombia. Parasitology research, 117(5), 1317–1323. DOI: 10.1007/s00436-018-5818-6.

Bones, A. J., Jossé, L., More, C., Miller, C. N., Michaelis, M., & Tsaousis, A. D. (2019). Past and future trends of Cryptosporidium in vitro research. Experimental para-sitology, 196, 28–37. DOI: 10.1016/j.exppara.2018.12.001.

Cavalier-Smith, T. (2014). Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. European journal of protistology, 50(5), 472–495. DOI: 10.1016/j.ejop.2014.07.002.

Cho, Y. I., & Yoon, K. J. (2014). An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. Journal of veterinary science, 15(1), 1–17. DOI: 10.4142/jvs.2014.15.1.1.

Dinler, C., Ulutas, B., Dinler, C., & Ulutas, B. (2017). Cryptosporidiosis in ruminants: update and current therapeutic approaches. Am. J. Anim. Vet. Sci, 12(3), 96–103. DOI: 10.3844/ajavsp.2017.96.103.

Ezzaty Mirhashemi, M., Zintl, A., Grant, T., Lucy, F. E., Mulcahy, G., & De Waal, T. (2015). Comparison of diagnostic techniques for the detection of Cryptosporidium oocysts in animal samples. Experimental parasitology, 151-152, 14–20. DOI: 10.1016/j.exppara.2015.01.018.

Falkenberg, U., Krömker, V., Konow, M., Flor, J., Sanftleben, P., & Losand, B. (2022). Management of calves in commercial dairy farms in Mecklenburg-Western Pomerania, Germany and its impact on calf mortality and prevalence of rotavirus and Cryptosporidium parvum infections in pre-weaned calves. Veterinary and Animal Science, 16, 100243. DOI: 10.1016/j.vas.2022.100243.

Fayer, R., Santín, M., & Trout, J. M. (2008). Cryptosporidium ryanae n. sp. (Apicomplexa: Cryptosporidiidae) in cattle (Bos taurus). Veterinary parasitology, 156(3-4), 191–198. DOI: 10.1016/j.vetpar.2008.05.024.

Govender, M., Choonara, Y. E., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2014). A review of the advancements in probiotic delivery: Conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech, 15(1), 29–43. DOI: 10.1208/s12249-013-0027-1.

Graef, G., Hurst, N. J., Kidder, L., Sy, T. L., Goodman, L. B., Preston, W. D., Arnold, S., & Zambriski, J. A. (2018). Impact of confinement housing on study end-points in the calf model of cryptosporidiosis. PLoS neglected tropical diseases, 12(4), e0006295. DOI: 10.1371/journal.pntd.0006295.

Holzhausen, I., Lendner, M., Göhring, F., Steinhöfel, I., & Daugschies, A. (2019). Distribution of Cryptosporidium parvum gp60 subtypes in calf herds of Saxony, Germany. Parasitology research, 118(5), 1549–1558. DOI: 10.1007/s00436-019-06266-1.

Kváč, M., Němejc, K., Kestřánová, M., Květoňová, D., Wagnerová, P., Kotková, M., Rost, M., Samková, E., McEvoy, J., & Sak, B. (2014). Age related susceptibil-ity of pigs to Cryptosporidium scrofarum infection. Veterinary parasitology, 202(3-4), 330–334. DOI: 10.1016/j.vetpar.2014.02.012.

Meganck, V., Hoflack, G., & Opsomer, G. (2014). Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta veterinaria Scandinavica, 56(1), 75. DOI: 10.1186/s13028-014-0075-x.

Petersen, H. H., & Enemark, H. L. (2018). Viability Assessment of Cryptosporidium parvum Oocysts by Vital Dyes: Dry Mounts Overestimate the Number of “Ghost” Oocysts. Foodborne pathogens and disease, 15(3), 141–144. DOI: 10.1089/fpd.2017.2348.

Rybachuk, Z., Shkromada, O., Predko, A., & Dudchenko, Y. (2020). Influence of probiotics “Immunobacterin-D” on biocenoses and development of the gastrointestinal tract of calves. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(98), 22–27. DOI: 10.32718/nvlvet9804.

Shkromada, O., & Nedzheria, T. (2020). Intensity of invasion in emeriosis of rabbits in different methods of keeping. Eureka: Health Sciences, 5, 107–114. DOI: 10.21303/2504-5679.2020.001419.

Tautenhahn, A., Merle, R., & Müller, K. E. (2020). Factors associated with calf mortality and poor growth of dairy heifer calves in northeast Germany. Preventive veterinary medicine, 184, 105154. DOI: 10.1016/j.prevetmed.2020.105154.

Thomas, M., Webb, M., Ghimire, S., Blair, A., Olson, K., Fenske, G. J., Fonder, A. T., Christopher-Hennings, J., Brake, D., & Scaria, J. (2017). Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific reports, 7(1), 12257. DOI: 10.1038/s41598-017-12481-6.

Thomson, S., Innes, E. A., Jonsson, N. N., & Katzer, F. (2016). A multiplex PCR test to identify four common cattle-adapted Cryptosporidium species. Parasitology Open, 2, E5. DOI: 10.1017/pao.2016.2.

Trotz-Williams, L. A., Jarvie, B. D., Peregrine, A. S., Duffield, T. F., & Leslie, K. E. (2011). Efficacy of halofuginone lactate in the prevention of cryptosporidiosis in dairy calves. The Veterinary record, 168(19), 509. DOI: 10.1136/vr.d1492.

Vélez, J., Lange, M. K., Zieger, P., Yoon, I., Failing, K., & Bauer, C. (2019). Long-term use of yeast fermentation products in comparison to halofuginone for the control of cryptosporidiosis in neonatal calves. Veterinary parasitology, 269, 57–64. DOI: 10.1016/ j.vetpar.2019.04.008.

World Health Organization. (2014). Antimicrobial resistance global report on surveillance: 2014 summary (No. WHO/HSE/PED/AIP/2014.2). World Health Organization. URL: https://apps.who.int/iris/bitstream/handle/10665/112647/WHO_HSE_PED_AIP_?sequence=1.

Zambriski, J. A., Nydam, D. V., Wilcox, Z. J., Bowman, D. D., Mohammed, H. O., & Liotta, J. L. (2013). Cryptosporidium parvum: determination of ID₅₀ and the dose-response relationship in experimentally challenged dairy calves. Veterinary parasitology, 197(1-2), 104–112. DOI: 10.1016/j.vetpar.2013.04.022.

Abstract views: 9
PDF Downloads: 3
Published
2022-07-16
How to Cite
Fotina, T., Shkromada, O., Berezovskyi, A., Petrov, R., Fotina, H., Nechyporenko, O., & Fotin, A. (2022). Development of methods for prevention of cryptosporidiosis of calves. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 3-9. https://doi.org/10.32718/nvlvet10601

Most read articles by the same author(s)

1 2 3 > >>