Epizootological analysis of the prevalence of salmonellosis in poultry in Ukraine in 2012–2021


  • O. M. Chechet State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0001-5099-5577
  • M. S. Karpulenko State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0001-8982-9031
  • L. Ye. Korniienko State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine
  • V. V. Ukhovskyi State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0002-7532-3942
  • O. A. Moroz State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine
  • O. S. Haidei State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0003-4503-4047
  • B. V. Gutyj Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-5971-8776
  • O. V. Krushelnytska Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-4401-8478
Keywords: infection, Salmonella spp., retrospective epizootiological analysis, bird.

Abstract

The main infectious agent that causes contamination of poultry products are bacteria of the genus Salmonella. The article presents the results of monitoring studies on salmonellosis among poultry of different technological direction of poultry farms of all forms of ownership in Ukraine. In the analysis of the results of the incidence of salmonellosis in poultry used Reports on the work of state laboratories of veterinary medicine of the State Food and Consumer Services of Ukraine for 2012–2021. Data from the State Statistics Service of Ukraine were also used during the work on the article. It was found that for the period 2012–2021, the total number of samples tested for salmonellosis was 306466, of which 932 were positive, which was 0.3 %. It is established that the number of studies in certain years differs greatly in number. After all, the peak number of studies fell on 2012 (51985 samples), but in 2020 it was only 25.796 samples or 49.6 % to the peak level of studies. The highest percentage of pathogen isolation was observed in the period from 2013 to 2015, respectively 0.39, 0.48 % and 0.38 %. In 2016–2018, there was a decrease in the number of positive samples, respectively, the number of positive samples was 0.24–0.33 %, the lowest percentage in 2019–2021, the number of positive samples was minimal and amounted to 0.05 %, 0.22 % and 0.13 %. Thus, there is a clear trend of decreasing the amount of pathogen. The largest number of positive samples of biological material for salmonellosis in the period 2012–2021 was found in Sumy and Luhansk regions, 156 and 186 samples, respectively. Slightly fewer positive samples were found in Kharkiv (117), Kirovohrad (79), Cherkasy (71), Zaporizhia (51), Donetsk (45), Kyiv (30) and Zhytomyr (30) regions. The pathogen Salmonella spp. in Zakarpattia, Rivne and Chernivtsi regions.

Downloads

Download data is not yet available.

References

Andino, A., & Hanning, I. (2015). Salmonella enterica: survival, colonization, and virulence differences among serovars. The Scientific World Journal, 2015, 520179. DOI: 10.1155/2015/520179.

Antunes, P., Mourão, J., Campos, J., & Peixe, L. (2016). Salmonellosis: the role of poultry meat. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 22(2), 110–121. DOI: 10.1016/j.cmi.2015.12.004.

Barbour, E. K., Ayyash, D. B., Alturkistni, W., Alyahiby, A., Yaghmoor, S., Iyer, A., Yousef, J., Kumosani, T., & Harakeh, S. (2015). Impact of sporadic reporting of poultry Salmonella serovars from selected developing countries. Journal of infection in developing countries, 9(1), 1–7. DOI: 10.3855/jidc.5065.

Barrow, P. A. (2000). The paratyphoid salmonellae. Revue scientifique et technique (International Office of Epizootics), 19(2), 351–375. DOI: 10.20506/rst.19.2.1225.

Cox, N. A., Cason, J. A., & Richardson, L. J. (2011). Minimization of Salmonella contamination on raw poultry. Annual review of food science and technology, 2, 75–95. DOI: 10.1146/annurev-food-022510-133715.

European Food Safety Authority (EFSA), European Center for Disease Prevention and Control (ECDC). 2013. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J., 11(2013), e3129.

Fernandez, J., Fica, A., Ebensperger, G., Calfullan, H., Prat, S., Fernandez, A., Alexandre, M., & Heitmann, I. (2003). Analysis of molecular epidemiology of Chilean Salmonella enterica serotype enteritidis isolates by pulsed-field gel electrophoresis and bacteriophage typing. Journal of clinical microbiology, 41(4), 1617–1622. DOI: 10.1128/JCM.41.4.1617-1622.2003.

Fica, A., Acosta, G., Dabanch, J., Perret, C., Torres, M., López, J., Jofré, L., Weitzel, T., & Comité de Infecciones Emergentes de la Sociedad Chilena de Infectología (2012). Brotes de salmonelosis y el tamaño y rol del Estado en Chile [Salmonellosis outbreaks and the size and role of the Chilean State]. Revista chilena de infectologia : organo oficial de la Sociedad Chilena de Infectologia, 29(2), 207–214. DOI: 10.4067/S0716-10182012000200014.

Gharieb, R. M., Tartor, Y. H., & Khedr, M. H. (2015). Non-Typhoidal Salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut pathogens, 7, 34. DOI: 10.1186/s13099-015-0081-1.

Hoop, R. K. (1997). The Swiss control programme for Salmonella enteritidis in laying hens: experiences and problems. Revue scientifique et technique (International Office of Epizootics), 16(3), 885–890. DOI: 10.20506/rst.16.3.1063.

Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., & Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food Commodities, United States, 1998-2008. Emerging infectious diseases, 19(8), 1239–1244. DOI: 10.3201/eid1908.121511.

Johnson, N. B., Hayes, L. D., Brown, K., Hoo, E. C., & Ethier K. A. (2014). CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors-United States, 2005-2013. MMWR supplements, 63(4), 3–27. URL: https://www.cdc.gov/mmwr/preview/mmwrhtml/su6304a2.htm.

Kongsanan, P., Angkititrakul, S., Kiddee, A., & Tribuddharat, C. (2021). Spread of Antimicrobial-Resistant Salmonella from Poultry to Humans in Thailand. Japanese journal of infectious diseases, 74(3), 220–227. DOI: 10.7883/yoken.JJID.2020.548.

Kumar, Y., Singh, V., Kumar, G., Gupta, N. K., & Tahlan, A. K. (2019). Serovar diversity of Salmonella among poultry. The Indian journal of medical research, 150(1), 92–95. DOI: 10.4103/ijmr.IJMR_1798_17.

Middleton, D., Savage, R., Tighe, M. K., Vrbova, L., Walton, R., Whitfield, Y., Varga, C., Lee, B., Rosella, L., Dhar, B., Johnson, C., Ahmed, R., Allen, V. G., & Crowcroft, N. S. (2014). Risk factors for sporadic domestically acquired Salmonella serovar Enteritidis infections: a case-control study in Ontario, Canada, 2011. Epidemiology and infection, 142(7), 1411–1421. DOI: 10.1017/S0950268813001945.

Obe, T., Nannapaneni, R., Schilling, W., Zhang, L., McDaniel, C., & Kiess, A. (2020). Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitization procedures. Poultry science, 99(9), 4539–4548. DOI: 10.1016/j.psj.2020.05.043.

Omwandho, C. O. A., & Kubota, T. (2010). Salmonella enterica serovar Enteritidis: a Mini-review of Contamination Routes and Limitations to Effective Control. JARQ, 44 (1), 7–16. URL: http://www.jircas.affrc.go.jp.

Pires, S. M., Vieira, A. R., Hald, T., & Cole, D. (2014). Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne pathogens and disease, 11(9), 667–676. DOI: 10.1089/fpd.2014.1744.

Retamal, P., Fresno, M., Dougnac, C., Gutierrez, S., Gornall, V., Vidal, R., Vernal, R., Pujol, M., Barreto, M., González-Acuña, D., & Abalos, P. (2015). Genetic and phenotypic evidence of the Salmonella enterica serotype Enteritidis human-animal interface in Chile. Frontiers in microbiology, 6, 464. DOI: 10.3389/fmicb.2015.00464.

Xiong, Z., Wang, S., Huang, Y., Gao, Y., Shen, H., Chen, Z., Bai, J., Zhan, Z., Wen, J., Liao, M., & Zhang, J. (2020). Ciprofloxacin-Resistant Salmonella enterica Serovar Kentucky ST198 in Broiler Chicken Supply Chain and Patients, China, 2010-2016. Microorganisms, 8(1), 140. DOI: 10.3390/microorganisms8010140.

Abstract views: 5
PDF Downloads: 2
Published
2022-07-16
How to Cite
Chechet, O., Karpulenko, M., Korniienko, L., Ukhovskyi, V., Moroz, O., Haidei, O., Gutyj, B., & Krushelnytska, O. (2022). Epizootological analysis of the prevalence of salmonellosis in poultry in Ukraine in 2012–2021. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 68-73. https://doi.org/10.32718/nvlvet10611

Most read articles by the same author(s)

1 2 3 > >>