Modern technologies for storing semen of domestic animals without the addi-tion of antibiotics


Keywords: alternative methods, antibiotics, bacteria, resistance, sperm storage, artificial insemination.

Abstract

Currently, there is a trend of breeding domestic animals through artificial insemination. As a result, very large amounts of sperm diluents containing antibiotics are used in animal husbandry. Antimicrobials are added to the semen diluent to control the growth of bacteria that contaminate the semen during selection. The proportion of antibiotic-resistant bacteria is steadily rising, threatening the entire health care system. That is why all fields of antibiotics application face the task of finding alternatives to this approach. The purpose of our study was to systematize modern technologies and methods of storing domestic animals’ semen which could reduce or eliminate the use of antibiotics, and would be an important step in the fight against multidrug-resistant bacteria. Due to the negative impact of antibiotics on sperm quality and their fertilizing ability, new alternative methods for sperm storage are constantly being improved and developed. The most common are low-temperature storage, physical methods to reduce bacterial stress, the use of antimicrobial peptides, nanoparticles and the use of various substances of animal, plant or other origin. The possibility of boar sperm low-temperature storage may open up completely new approaches in the future by optimizing the cooling rate. Colloidal centrifugation as one of the physical methods is a practical means of reducing the bacterial load in sperm samples and it can be effectively used applying equipment that is available at many breeding plants. Antimicrobial peptides or nanoparticles of iron oxide may be a useful alternative to the addition of antibiotics during sperm storage. Antimicrobial peptides have been shown to control the growth of aerobic and anaerobic bacteria in relatively low concentrations without adversely affecting sperm quality and fertility. However, it is substantiated that nanoparticles with the size of 40 – 60 nm have significant antimicrobial ability against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. At the same time, further studies are needed on the use of various substances of animal or plant origin (royal jelly, aloe vera, algae extracts), as well as determining adequate concentrations of these new compounds that should be effective in fighting bacteria and not affect quality characteristics of sperm.

Downloads

Download data is not yet available.

References

Abd-Allah, S. M. (2010). Effect of royal jelly on bovine sperm characteristics during post – thaw incubation in vitro. Revista Veterinaria, 21(2), 81–85. DOI: 10.30972/vet.2121747.

Al-Kass, Z., Spergser, J., Aurich, C., Kuhl, J., Schmidt, K., & Morrell, J. M. (2019). Effect of presence or absence of antibiotics and use of modified single layer centrif-ugation on bacteria in pony stallion semen. Reproduc-tion in Domestic Animals, 54(2), 342–349. DOI: 10.1111/rda.13366.

Althouse, G. C. (2008). Sanitary procedures for the production of extended semen. Reproduction in Domestic Animals, 43(2), 374–378. DOI: 10.1111/j.1439-0531.2008.01187.x.

Aurich, C., & Spergser, J. (2007). Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology, 67(5), 912–918. DOI: 10.1016/ j.theriogenology.2006.11.004.

Barone, F., Ventrella, D., Zannoni, A., Forni, M., & Bacci, M. L. (2016). Can microfiltered seminal plasma pre-serve the morphofunctional characteristics of porcine spermatozoa in the absence of antibiotics? A prelimi-nary study. Reproduction in Domestic Animals, 51(4), 604–610. DOI: 10.1111/rda.12699.

Blum, M. S., Novak, A. F., & Taber, S. (1959). 10-Hydroxy-delta2-decenoic acid, an antibiotic found in royal jell. Science, 130(3373), 452–453. DOI: 10.1126/science.130.3373.452.

Brito, B. F., Antunes, L. P., Rodrigues, F. R. N., Salgueiro, C. C. M., Cavalcante, J. M. M., & Nunes, J. F. (2014). Effect of Aloe vera added in different concentrations to Powdered Coconut Water (ACP-102®) in ram se-men diluted and incubated for two hours. Acta Veter-inaria Brasilica, 8, 242–243. DOI: 10.21708/avb.2014.8.0.3963.

Bussalleu, E., Sancho, S., Briz, M. D., Yeste, M., & Bonet, S. (2017). Do antimicrobial peptides PR-39, PMAP-36 and PMAP-37 have any effect on bacterial growth and quality of liquid-stored boar semen? Theriogenol-ogy, 89, 235–243. DOI: 10.1016/j.theriogenology.2016.11.017.

Camugli, S., Eterpi, M., Gavin-Plagne, L., Gonzalez, A., Gorges, J-C., Vanssay, A., & Schmitt, É. (2019). Bactibag®: An opportunity to reduce the use of anti-biotics in boar semen processing. Theriogenology, 137, 128. DOI: 10.1016/j.theriogenology.2019.05.052.

Casas, I., & Althouse, G. C. (2013). The protective effect of a 17 °C holding time on boar sperm plasma membrane fluidity after exposure to 5 °C. Cryobiology, 66(1), 69–75. DOI: 10.1016/j.cryobiol.2012.11.006.

Catry, B., Van Duijkeren, E., Pomba, M. C., Greko, C., Moreno, M. A., Pyörälä, S., Ruzauskas, M., Sanders, P., Threlfall, E. J., Ungemach, F., Törneke, K., Munoz-Madero, C., & Torren-Edo, J. (2010). Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and an-imal health. Epidemiology & Infection, 138(5), 626–644. DOI: 10.1017/S0950268810000014.

Cordis (2019). An alternative to antibiotics in porcine semen doses. URL: https://cordis.europa.eu/project/ id/867184/reporting.

Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins – a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. DOI: 10.1038/nrmicro2937.

Dawgul, M. A., Greber, K. E., Bartoszewska, S., Ba-ranska‐Rybak, W., Sawicki, W., & Kamysz, W. (2017). In Vitro evaluation of cytotoxicity and per-meation study on lysine‐ and arginine‐based lipopep-tides with proven antimicrobial activity. Molecules, 22(12), 2173. DOI: 10.3390/molecules22122173.

Duijkeren, E. V., Box, A. T., Schellen, P., Houwers, D. J., & Fluit, A. C. (2005). Class 1 integrons in Enterobacteri-aceae isolated from clinical infections of horses and dogs in The Netherlands. Microbial Drug Resistance, 11(4), 383–386. DOI: 10.1089/mdr.2005.11.383.

Estienne, M. J., Harper, A. F., & Day, J. L. (2007). Characteristics of sperm motility in boar semen diluted in different extenders and stored for seven days at 18 °C. Biology of Reproduction, 7(3), 221–231. URL: https://pubmed.ncbi.nlm.nih.gov/18059974.

Fang, Q., Wang, J., Hao, Y. Y., Li, H., Hu, J. X., Yang, G. S., & Hu, J. H. (2017). Effects of iodine methionine on boar sperm quality during liquid storage at 17 °C. Re-production in Domestic Animals, 52(6), 1061–1066. DOI: 10.1111/rda.13024.

Farias, C. F. A., Tork, A. L. P., Rique, A. S., Queirós, A. F., & Silva, S. V. (2019). Study of Aloe vera efficacy as a plant origin extender in the cooling on bovine epidid-ymal spermatozoa. Revista Brasileira de Reprodução Animal, 43(3), 787–794. URL: https://www.cabdirect.org/ glob-alhealth/abstract/20193472448.

Foote, R. H. (2002). The history of artificial insemination: Selected notes and notables. Journal of Animal Sci-ence, 80, 1–10. DOI: 10.2527/animalsci2002.80E-Suppl_21a.

Goldberg, A. M. G., Argenti, L. E., Faccin, J. E., Linck, L., Santi, M., Bernardi, M. L., Cardoso, M. R. I., Wentz, I., & Bortolozzo, F. P. (2013). Risk factors for bacterial contamination during boar semen collection. Research in Veterinary Science, 95(2), 362–367. DOI: 10.1016/j.rvsc.2013.06.022.

Guimarães, T., Lopes, G., Pinto, M., Silva, E., Miranda, C., Correia, M. J., Damásio, L., Thompson, G., & Rocha, A. (2015). Colloid centrifugation of fresh stallion se-men before cryopreservation decreased microorgan-ism load of frozen-thawed semen without affecting seminal kinetics. Theriogenology, 83(2), 186–191. DOI: 10.1016/j.theriogenology.2014.09.003.

Guzman, M., Dille, J., & Godet, S. (2012). Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed-icine: Nanotechnology, Biology and Medicine, 8(1), 37–45. DOI: 10.1016/j.nano.2011.05.007.

Hensel, B., Jakop, U., Scheinpflug, K., Mühldorfer, K., Schröter, F., Schäfer, J., & Schulze, M. (2020). Low temperature preservation of porcine semen: Influence of short antimicrobial lipopeptides on sperm quality and bacterial load. Scientific Reports, 10(1), 13225. DOI: 10.1038/s41598-020-70180-1.

Hensel, B., Jakop, U., Scheinpflug, K., Schröter, F., Sand-mann, M., Mühldorfer, K., & Schulze, M. (2021). Low temperature preservation: Influence of putative bio-active microalgae and hop extracts on sperm quality and bacterial load in porcine semen. Sustainable Chemistry and Pharmacy, 19, 100359. DOI: 10.1016/j.scp.2020.100359.

Hirt, H., & Gorr, S. U. (2013). Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomo-nas aeruginosa. Antimicrobial Agents and Chemo-therapy, 57(10), 4903–4910. DOI: 10.1128/AAC.00311-13.

Jäkel, H., Scheinpflug, K., Mühldorfer, K., Gianluppi, R., Lucca, M. S., Mellagi, A. P. G., & Waberski, D. (2021). In vitro performance and in vivo fertility of antibiotic‐free preserved boar semen stored at 5 °C. Journal of Animal Science and Biotechnology, 12(1), 9. DOI: 10.1186/s40104-020-00530-6.

Jakop, U., Hensel, B., Orquera, S., Rößner, A., Alter, T., Schröter, F., Grossfeld, R., Jung, M., Simmet, C., & Schulze, M. (2021). Development of a new antimicro-bial concept for boar semen preservation based on bacteriocins. Theriogenology, 173, 163–172. DOI: 10.1016/j.theriogenology.2021.08.004.

Jakop, U., Svetlichnyy, V., Schiller, J., Schulze, M., Schrö-ter, F., & Müller, K. (2019). In vitro supplementation with unsaturated fatty acids improves boar sperm vi-ability after storage at 6°C. Animal Reproduction Sci-ence, 206, 60–68. DOI: 10.1016/j.anireprosci.2019.05.008.

Johannisson, A., Morrell, J. M., Thorén, J., Jönsson, M., Dalin, A.-M., & Rodriguez-Martinez, H. (2009). Col-loidal centrifugation with Androcoll-E™ prolongs stal-lion sperm motility, viability and chromatin integrity. Animal Reproduction Science, 116(1-2), 119–128. DOI: 10.1016/j.anireprosci.2009.01.008.

Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ouyang, Y. S., & Chen, Y. B. (2010). Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 85(4), 1115–1122. DOI: 10.1007/s00253-009-2159-5.

Malmgren, L., Olsson, E. E., Engvall, A., & Albihn, A. (1998). Aerobic bacterial flora of semen and stallion reproductive tract and its relationship to fertility under field conditions. Acta Veterinaria Scandinavica, 39(2), 173–182. DOI: 10.1186/BF03547790.

Martínez-Pastor, F., Lacalle, E., Martínez-Martínez, S., Fernández-Alegre, E., Álvarez-Fernández, L., Martinez-Alborcia, M.-J., Bolarin, A., & Morrell, J. M. (2021). Low density Porcicoll separates spermatozoa from bacteria and retains sperm quality. Theriogenol-ogy, 165, 28–36. DOI: 10.1016/j.theriogenology.2021.02.009.

Maxwell, W. M. C., & Johnson, L. A. (1997). Membrane status of boar spermatozoa after cooling or cryopreservation. Theriogenology, 48(2), 209–219. DOI: 10.1016/S0093-691X(97)84068-X.

Menezes, T. A., Mellagi, A. P. G., da Silva Oliveira, G., Bernardi, M. L., Wentz, I., Ulguim, R. D. R., & Bortolozzo, F. P. (2020). Antibiotic‐free extended boar semen preserved under low temperature maintains acceptable in vitro sperm quality and reduces bacterial load. Theriogenology, 149, 131–138. DOI: 10.1016/j.theriogenology.2020.03.003.

Morrell, J. M. (2011). Artificial Insemination: Current and Future Trends. In M. Manafi (Ed.). Artificial Insemination in Farm Animals (pp. 1 – 14). IntechOpen. DOI: 10.5772/17943.

Morrell, J. M., & Nunes, M. M. (2018). Practical guide to Single Layer Centrifugation of stallion semen. Equine Veterinary Education, 30(7), 392–398. DOI: 10.1111/eve.12658.

Morrell, J. M., & Wallgren, M. (2011). Removal of bacte-ria from boar ejaculates by Single Layer Centrifuga-tion can reduce the use of antibiotics in semen ex-tenders. Animal Reproduction Science, 123(1-2), 64–69. DOI: 10.1016/j.anireprosci.2010.11.005.

Morrell, J. M., & Wallgren, M. (2014). Alternatives to antibiotics in semen extenders: a review. Pathogens, 3, 934 – 946. DOI: 10.3390/pathogens3040934.

Morrell, J. M., Klein, C., Lundeheim, N., Erol, E., & Troedsson, M. H. T. (2014). Removal of bacteria from stallion semen by colloid centrifugation. Animal Reproduction Science, 145(1-2), 47–53. DOI: 10.1016/j.anireprosci.2014.01.005.

Morrell, J. M., Núñez-González, A., Crespo-Félez, I., Mar-tínez-Martínez, S., Martínez Alborcia, M-J., Fernán-dez-Alegre, E., Dominguez, J. C., Gutiérrez-Martín, C. B., & Martínez-Pastor, F. (2019). Removal of bacteria from boar semen using a low-density colloid. Theri-ogenology, 126, 272–278. DOI: 10.1016/j.theriogenology.2018.12.028.

Morrell, J. M., Saravia, F., Van Wienen, M., Wallgren, M., & Rodriguez-Martinez, H. (2009). Selection of boar spermatozoa using centrifugation on a glycidoxypro-pyltrimethoxysilane-coated silica colloid. Journal of Reproduction and Development, 55(5), 547–552. DOI: 10.1262/jrd.20243.

Paschoal, A. F. L., Luther, A. M., Jäkel, H., Scheinpflug, K., Mühldorfer, K., Bortolozzo, F. P., & Waberski, D. (2020). Determination of a cooling‐rate frame for antibiotic‐free preservation of boar semen at 5 °C. PLoS ONE, 15(6), e0234339. DOI: 10.1371/journal. pone.0234339.

Puig-Timonet, A., Castillo-Martín, M., Pereira, B. A., Pinart, E., Bonet, S., & Yeste, M. (2018). Evaluation of porcine beta defensins-1 and -2 as antimicrobial peptides for liquid-stored boar semen: effects on bac-terial growth and sperm quality. Theriogenology, 111, 9–18. DOI: 10.1016/j.theriogenology.2018.01.014.

Radha, M. H., & Laxmipriya, N. P. (2014). Evaluation of biological properties and clinical effectiveness of Aloe vera: A systematic review. Journal of Traditional and Complementary Medicine, 5(1), 21–26. DOI: 10.1016/j.jtcme.2014.10.006.

Santos, C. S., & Silva, A. R. (2020). Current and alterna-tive trends in antibacterial agents used in mammalian semen technology. Animal Reproduction, 17(1), e20190111. DOI: 10.21451/1984-3143-AR2019-0111.

Schulze, M., Ammon, C., Rüdiger, K., Jung, M., & Grobbel, M. (2015). Analysis of hygienic critical control points in boar semen production. Theriogenology, 83(3), 430–437. DOI: 10.1016/j.theriogenology.2014.10.004.

Schulze, M., Jung, M., & Hensel, B. (2022). Science‐based quality control in boar semen production. Molecular Reproduction and Development, 1–9. DOI: 10.1002/mrd.23566.

Schulze, M., Junkes, C., Mueller, P., Speck, S., Ruediger, K., Dathez, M., & Mueller, K. (2014). Effects of Cati-onic Antimicrobial Peptides on Liquid-Preserved Boar Spermatozoa. PLoS ONE, 9(6), e100490. DOI: 10.1371/journal.pone.0100490.

Shaoyong, W., Li, Q., Ren, Z., Wei, C., Chu, G., Dong, W., Yang, G. S., & Pang, W. J. (2019). Evaluation of ε-polylysine as antimicrobial alternative for liquid-stored boar semen. Theriogenology, 130, 146–156. DOI: 10.1016/j.theriogenology.2019.03.005.

Shaoyong, W., Li, Q., Ren, Z., Xiao, J., Diao, Z., Yang, G., & Pang, W. (2019). Effects of kojic acid on boar sperm quality and anti-bacterial activity during liquid preservation at 17 C. Theriogenology, 140, 124–135. DOI: 10.1016/j.theriogenology.2019.08.020.

Sidashova, S. O., Humennyi, O. H., Khalak, V. I., Susol, R. L., Lobchenko, V. О., Stryzhak, T. A., Lobchenko, S. F., & Stryzhak, A. V. (2020). UA Patent No. 141818. Kyiv: DP “Ukrainskyi instytut intelektualnoi vlasnosti” (in Ukrainian).

Smole, I., Thomann, A., Frey, J., & Perreten, V. (2010). Repression of common bull sperm flora and in vitro impairment of sperm motility with Pseudomonas aeruginosa introduced by contaminated lubricant. Reproduction in Domestic Animals, 45(4), 737–742. DOI: 10.1111/j.1439-0531.2008.01319.x.

Song, L., Xie, W., Zhao, Y., Lv, X., Yang, H., Zeng, Q., Zheng, Z., & Yang, X. (2019). Synthesis, antimicrobi-al, moisture absorption and retention activities of kojic acid-grafted konjac glucomannan oligosaccha-rides. Polymers, 11(12), 1–12. DOI: 10.3390/polym11121979.

Tsakmakidis, I. A., Samaras, T., Anastasiadou, S., Basi-oura, A., Ntemka, A., Michos, I., Simeonidis, K., Kara-giannis, I., Tsousis, G., Angelakeris, M., & Bos-cos, C. M. (2020). Iron Oxide Nanoparticles as an Al-ternative to Antibiotics Additive on Extended Boar Semen. Nanomaterials, 10(8), 1568. DOI: 10.3390/nano10081568.

Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459), eaaw1944. DOI: 10.1126/science.aaw1944.

Waberski, D., Luther, A. M., Grunther, B., Jakel, H., Henning, H., Vogel, C., & Weitze, K. F. (2019). Sperm function in vitro and fertility after antibiotic‐free, hypothermic storage of liquid preserved boar semen. Scientific Reports, 9(1), e14748. DOI: 10.1038/s41598-019-51319-1.

Wallgren, M. (1996). Screening of mycoplasmal and bacterial content in semen from Swedish AI-boars, 14th International pig veterinary society congress. Bologna: University of Bologna. Faculty of veterinary medicine.

Wasilewska, K., & Fraser, L. (2017). Boar variability in sperm cryo‐tolerance after cooling of semen in different long‐term extenders at various temperatures. Animal Reproduction Science, 185, 161–173. DOI: 10.1016/j.anireprosci.2017.08.016

Abstract views: 5
PDF Downloads: 3
Published
2022-07-16
How to Cite
Tul, O., Kyrychko, B., & Panasova, T. (2022). Modern technologies for storing semen of domestic animals without the addi-tion of antibiotics. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 74-80. https://doi.org/10.32718/nvlvet10612