Results of monitoring studies of caecal samples with animal contents for antimicrobial resistance in 2021


  • O. M. Chechet State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0001-5099-5577
  • O. S. Haidei State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0003-4503-4047
  • V. O. Andriiashchuk State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0002-0983-9297
  • O. I. Horbatiuk State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine
  • V. L. Kovalenko State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0002-9244-6653
  • I. V. Musiiets State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0002-2456-560X
  • D. O. Ordynska State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine https://orcid.org/0000-0003-3481-3248
  • V. V. Skliar State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise, Kyiv, Ukraine
  • B. V. Gutyj Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-5971-8776
  • O. V. Krushelnytska Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv, Ukraine https://orcid.org/0000-0002-4401-8478
Keywords: antibiotic resistance, Escherichia coli, Salmonella spp., Enterococcus spp., Campylobacter spp., state monitoring, antibacterial drugs

Abstract

The article presents the results of studies of caecum samples (cecal appendages) with contents from cattle, pigs, and poultry following the State Monitoring Plan for Antimicrobial Resistance in Veterinary Medicine for 2021, isolated and identified isolates of zoonoses and commensal microorganisms, namely: Escherichia coli, Salmonella spp., Enterococcus faecium, Enterococcus faecalis, Campylobacter spp. The disk diffusion method conducted a study on determining antimicrobial sensitivity to antibacterial drugs. The results of studies on identifying acquired resistance mechanisms to antibacterial drugs are also presented. Interpretation of growth retardation zones was carried out following EUCAST requirements. As a result of the obtained data, 448 isolates were isolated and identified among 2120 samples submitted for research: E coli accounted for 37.7 %, Salmonella spp. – 4.24 %, Enterococcus faecium – 12.7 %, Enterococcus faecalis – 37.9 %, Campylobacter spp. – 7.4 % of all isolated isolates. When determining the sensitivity to antibacterial drugs, eight sensitive isolates were found. 237 isolates were monoresistant (sensitive to 1–2 ABP), and 203 were polyresistant (sensitive to 3 or more ABP). As a result of the research, production (ESBL) was detected and confirmed in ten Escherichia coli strains. Three vancomycin-resistant strains of Enterococcus faecium, and Enterococcus faecalis were identified. Study the prevalence of Escherichia coli, Salmonella spp., Enterococcus faecium, Enterococcus faecalis, Campylobacter spp. circulating in Ukraine. will promote a standardized approach to data collection, analysis, and sharing on a global scale and will ensure the fulfillment of the National Action Plan for Combating Antibiotic Resistance to Antimicrobial Drugs tasks. Ukraine has developed a National Action Plan to combat antimicrobial resistance. In the countries of the European Union, there is constant monitoring for Escherichia coli, Salmonella spp., Enterococcus faecium, Enterococcus faecalis, Campylobacter spp. The prospect of further research is to continue monitoring antimicrobial resistance against zoonoses and commensal bacteria, namely: isolates of Escherichia coli, Salmonella spp., Enterococcus faecium, Enterococcus faecalis, Campylobacter spp., as they play an important epidemiological role among infectious diseases common to humans and animals, determining their sensitivity and identifying acquired mechanisms of resistance to antibacterial drugs.

Downloads

Download data is not yet available.

References

Alekshun, M. N., & Levy, S. B. (2007). Molecular mecha-nisms of antibacterial multidrug resistance. Cell, 128(6), 1037–1050. DOI: 10.1016/j.cell.03.004.

Bao, L., Peng, R., Ren, X., Ma, R., Li, J., & Wang, Y. (2013). Analysis of some common pathogens and their drug resistance to antibiotics. Pak. J. Med. Sci., 29(1), 135–139. DOI: 10.12669/pjms.291.2744.

Brtkova, A., Filipova, M., Drahovska, H., et al. (2010). Characterization of enterococci of animal and environmental origin using phe-notypic methods and comparison with PCR based methods. Veterinarni Medicina, 55(3), 97–105. URL: https://www.agriculturejournals.cz/publicFiles/159 _2009-VETMED.pdf.

Byappanahalli, M. N., Nevers, M. B., & Korajkic, A. et al. (2012). Enterococci in the environment. Microbiology and Molecular Biology Reviews, 76(4), 685–706. DOI: 10.1128/MMBR.00023-12.

Chen, S., Zhao, S., White, D. G., Schroeder, C. M., Lu, R., Jang, H., McDermott, P. F., Ayers, S., & Meng, J. (2020). Characterization of Multiple – Antimicrobial – Resistant Salmonella Serovars isolated from Retail Meats. Appl Environ Microbiol, 70(1), 1–7. DOI: 10.1128/AEM.70.1.1-7.2004.

Chung, Y. S., Kwon, K. H., Shin, S., et al. (2014). Characterization of Veterinary Hospital-Associated Isolates of Enterococcus Species in Korea. J. Microbiol. Biotechnol, 24(3), 386–393. DOI: 10.4014/jmb.1310.10088.

de Sousa, J. M., Balboutin, R., Durao, P., & Gordo, I. (2017). Multidrug – resistant bacteria compensate for the epistasis between resistances. PLoS Biol, 15(4), e2001741. DOI: 10.1371/journal.pbio.2001741.

Dworniczek, E., Piwowarczyk, J., Seniuk, A., & Gościniak, G. (2014). Enterococcus – virulence and susceptibility to photodynamic therapy of clinical isolates from Lower Silesia, Poland. Scand. J. Infect. Dis., 46(12), 846–853. DOI: 10.3109/00365548.2014.952244.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Con-trol), 2021. The European Union Summary Report on antimicrobial resistance in zoonotic and indicator bac-teria from humans, animals and food in 2018/2019. DOI: 10.2903/j.efsa. 2021.6490.

EUCAST guidelines for detection of resistance mecha-nisms and specific resistances of clinical and/or epi-demiological importance Version 2.01 Juli 2017-43p. https://www.eucast.org.

European Union (2003). Regulation (EC) № 1831/2003 of the European Parlament and of the Council of 22 September 2003 on additives for use in animal nutri-tion. Off J Eur Union, 50.

Fotina, T. I., Fotina, G. A., Klischova, G. E., Arefjev, V. L. & Chemich, J. M. (2018). Rol monitoring ta kontrolu za toxikoinfectijamy ta toxikozamy u zabezpetcenni biobezpeky naselennja Ukrainy. Veterinarna biotech-nologia, 32(2), 585–592 (in Ukrainian).

Garkavenko, T. A., Gorbatiuk, O. I., Kozitska, T. G, An-driiashchuk, V. O., & Dibkova, S. M. (2020). Biorisics for animals and humans for the promise of entero-coccal infections. Veterinary biotechnology, 36, 21–33 (in Ukrainian).

Garkavenko, T. O., & Bergilevich, O. M. (2017). Vyvchennia antybiotycorezistentnosti osnovnych zbudnykiv bacterialnych zachvoruvan tvaryn ta ptytsi do β-lactamiv v Ukraini. Veterynarna biotechnologiia – Veterynary biotechnology, 34, 33–45 (in Ukrainian).

Garkavenko, T. O., Andriiaschuk, V. O., Gorbatyuk, O. I., Kozitska, T. G., & Garkavenko, V. M. (2021). Re-zultaty bacteriologichnyh doslidzhen ta spectr sero-logichnyh variantiv salmonel, vydilenyh iz harchovyh productive tvarynnogo pohodzhennya v Ukraini za 2016–2020 rr. [The results of bacteriological research and the range of serological variants of Salmonella isolated from food products of animal origin in Ukraine for the period 2016-2020]. Veterynary bio-technology, 39, 29–43. DOI: 10.31073/vet_biotech39-03 (in Ukrainian).

Garkavenko, T. O., Nevolko, O. M., Ordynska, D. O., Mezhenska, N. A., & Kozitska, T. G. (2015). Antybiotykoresistentnist mikroorganizmiv [Antibiotic resistance of microorganisms]. Veterynarna medycyna Ukrainy, 3(229), 13-16. URL: http://nbuv.gov.ua/ UJRN/vetm_2015_3_7 (in Ukrainian).

Garmasheva, I. L., & Kovalenko, N. K. (2010). Identifikacija i taksonomija jenterokokkov. Zhurnal mikrobiologii, jepidemiologii i immunologii, 5, 49–54 (in Ukrainian).

Gnanadhas, D. P., & Marathe, S. A. (2013). Biocides – resistance, cross-resistance mechanisms and assess-ment. Expert Opinion on Investigational Drugs, 22 (2), 191–206. DOI: 10.1517/13543784.2013.748035.

Jiménez, E., Ladero, V., Chico, I. et al. (2013). Antibiotic resistance, virulence determinants and production of biogenic amines among enterococci from ovine, feline, canine, porcine and human milk. BMC Microbiology, 13, 288–300. DOI: 10.1186/1471-2180-13-288.

Kasjanchuk, V. V., Bergilevich, O. M., Kusturov, V. B., & Derjabin, O. M. (2018). Resistentnist isoljativ Esche-richia coli, vydilenyh z poverhni tusch svynej do antybacterialnyh preparativ [Resistance of Escherich-ia coli isolates isolated from the surface of pig car-casses to antibacterial drugs]. Veterynarna biotech-nologiia, 32(2), 219–229. DOI: 10.31073/vet_biotech32(2)-26 (in Ukrainian).

Kim, Y.-J., Park, J.-H., & Seo, K.-H. (2018). Comparison of the loads and antibioticresistance profiles of Enter-ococcus species from conventional and organic chicken carcasses in South Korea. Poultry Science, 97(1), 271–278. DOI: 10.3382/ps/pex275.

Kotzuba, K. R., Voronkova, O. S., Vinnikov, A. I., & Schevchenko, T. M. (2014). Mehanizmy stiykosti do antybiotykiv predstavnykiv rodyny Enterobacteri-aceae [Mechanisms of resistance to antibiotics of the family Enterobacteriaceae]. Visnyk Dniprope-trovskogo universytetu. Biologia, medicina, 5(1), 33–38. DOI: 10.15421/021407 (in Ukrainian).

Kryvda, M. I., Galatiuk, O. E., & Solodka, L. O. (2014). Problemy identyfikatsii enterobacterij pry doslidzhen-ni klinichnogo materialu. Visnyk Zhytomyrskogo natsionalnogo argoekologichnogo universytetu, 1(1), 125–130 (in Ukrainian).

Lee, B., Kang, S. Y., Kang, H. M., Yang, N. R., Kang, H. G., Ha, I. S., Cheong, H. I., Lee, H. J., & Choi, E. H. (2013). Outcome of antimicrobial therapy of pediatric urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae. Infect. Chemother, 45(4), 415–421. DOI: 10.3947/ic.2013.45.4.415.

Liu, P. Y., Shi, Z. Y., Tung, K. C., Shyu, C. L., Chan, K. W., Liu, J. W., Wu, Z. Y., Kao, C. C., Huang, Y. C., & Lin, C. F. (2014). Antimicrobial resistance to cefotaxime and ertapenem in Enterobacteriaceae: The effects of altering clinical breakpoints. J. Infect. Dev. Ctries, 8(3), 289–296. DOI: 10.3855/jidc.3335.

Livermore, D. M. (2005). β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev, 8(4), 557–584. DOI: 10.1128/CMR.8.4.557.

Mughini-Gras, L., Dorado-García, A., van Duijkeren, E., van den Bunt, G., Dierikx, C. M., Bonten, M. J. M., Bootsma, M. C. J., Schmitt, H., Hald, T., Evers, E. G., de Koeijer, A., van Pelt, W., Franz, E., Mevius, D. J., & Heederik, D. J. J. (2019). Attributable sources of community-acquired carriage of Escherichia coli con-taining βlactam antibiotic resistance genes: a popula-tion-based modelling study. The Lancet Planetary Health, 3(8), e357–e369. DOI: 10.1016/S2542-5196(19)30130-5.

Nilsen, E., Haldorsen, B. C., Sundsfjord, A., Simonsen, G. S., Ingebretsen, A., Naseer, U., & Samuelsen, O. (2013). Large IncHI2-plasmids encode extended-spectrum β-lactamases (ESBLs) in Enterobacter spp. bloodstream isolates, and support ESBL-transfer to Escherichia coli. Clin. Microbiol. Infect, 19(11), E516–518. DOI: 10.1111/1469-0691.12274.

Pfaller, M. A., Flamm, R. K., Sader, H. S., & Jones, R. N. (2014). Ceftaroline activity against bacterial organ-isms isolated from acute bacterial skin and skin struc-ture infections in United States medical centers (2009–2011). Diagn. Microbiol. Infect. Dis, 78(4), 422–428. DOI: 10.1016/j.diagmicrobio.2013.08.027.

Pitout, J. D., & Laupland, K. B. (2008). Extended-spectrum beta-laktamase-producing Enterobacteri-aceae: an еmerging public-health concern. Lancet In-fect Dis, 8(3), 159–166. DOI: 10.1016/S1473-3099(08)70041-0.

Rublenko, N., & Holovko, A. (2020). Antimicrobial susceptibility of isolates of Salmonella enterica subsp. Enterica isolated in Ukraine during the period of 2014–2017. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(97), 58–68. DOI: 10.32718/nvlvet9711.

Salmanov, A. G., & Muzyka, V. P. (2017). Borotba z rezystentnistiu do antybiotykiv na pryntsypakh kotseptsii “Edyne zdorovya” [Combating antibiotic resistance on One Health catsepsia prints]. Mizhnarodnyj zhurnal antybiotyky ta probiotyky, 1(2), 8–29. DOI: 10.31405/ijap.1-2.17.01.

Salmanov, A. G., Marievskij, V. F., & Nalapko, U. I. (2010). Analiz etiologii i antybiotykoresistentnosti osnovnykh zbudnykiv vnutrishnolikarnyanyh infektsij u hirurgichnyh statsionarah. Ukrainsryj zhurnal ekstremalnoi medytsyny imeni G. O. Mozhaeva, 11(3), 48–55 (in Ukrainian).

Schane, A. L., Mody, R. K., Crump, L. A., Tarr, P. I., Stei-ner, T. S., Kotloff, K., & Cantey, J. (2017). Infections Diseases Sotiety of America clinical practice guide-lines for the diagnosis and management of infectious diarrhea. Clinical Infections Diseases, 65(12), e45–e80. DOI: 10.1093/cid/cix669.

Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Herman, L., Haesebrouk, F., & Butaye, P. (2010). Broad-spectrum beta-laktamases among Enterobac-teriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev, 34, 295–316. DOI: 10.1111/j.1574-6976.2009.00198.x.

Stetsko, T. I. (2018). Monitorynh antybiotykorezystent-nosti zoonoznykh bacteriy v Yevropeyskomu spivtovarystvi. [Monitoring of antibiotic resistance of zoonotic bacteria in the European community]. Veter-inary biotechnology, 32(2), 504–515. DOI: 10.31073/vet_biotech32(2)-61 (in Ukrainian).

Valyshev, A. V., & Gercen, N. V. (2012). Faktory patogennosti jenterokokkov kishechnoj mikro-flory cheloveka. Zhurnal mikrobiologii, jepidemiologii i immunologii, 4, 41–44 (in Ukrainian).

Van Boeckel, T. P., Brower, C., Gilbert, M., & Grenfel, B. T., et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649–5654. DOI: 10.1073/pnas.1503141112.

Vose, D., Acar, J., Anthony, F., Franklin, A., Gupta, R., et al. (2001). Antimicrobial resistans: risk analysis meth-odology for the potential impact on public health of antimicrobial resistant bacteria of animal origin. Re-view of Science and Technology, 20(3), 811–827. DOI: 10.20506/rst.20.3.1319.

Yuen, G. J., & Ausubel, F. M. (2014). Enterococcus infection biology: Lessons from invertebrate host models. J. Microbiol, 52(3), 200–210. DOI: 10.1007/s12275-014-4011-6

Abstract views: 117
PDF Downloads: 51
Published
2022-07-16
How to Cite
Chechet, O. M., Haidei, O., Andriiashchuk, V., Horbatiuk, O., Kovalenko, V., Musiiets, I., Ordynska, D., Skliar, V., Gutyj, B., & Krushelnytska, O. (2022). Results of monitoring studies of caecal samples with animal contents for antimicrobial resistance in 2021. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 24(106), 128-135. https://doi.org/10.32718/nvlvet10620

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 > >>